Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

A repeating fast radio burst

Naturevolume 531pages202–205 (2016)Cite this article

Subjects

Abstract

Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances1,2,3,4,5,6,7,8. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections9. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events10. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst4. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star11,12.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery and follow-up detections of FRB 121102.
Figure 2: FRB 121102 burst morphologies and spectra.

Similar content being viewed by others

References

  1. Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F. A bright millisecond radio burst of extragalactic origin.Science318, 777–780 (2007)

    Article ADS CAS  Google Scholar 

  2. Thornton, D. et al. A population of fast radio bursts at cosmological distances.Science341, 53–56 (2013)

    Article ADS CAS  Google Scholar 

  3. Burke-Spolaor, S. & Bannister, K. W. The Galactic position dependence of fast radio bursts and the discovery of FRB 011025.Astrophys. J.792, 19 (2014)

    Article ADS  Google Scholar 

  4. Spitler, L. G. et al. Fast radio burst discovered in the Arecibo Pulsar ALFA survey.Astrophys. J.790, 101 (2014)

    Article ADS  Google Scholar 

  5. Petroff, E. et al. A real-time fast radio burst: polarization detection and multiwavelength follow-up.Mon. Not. R. Astron. Soc.447, 246–255 (2015)

    Article ADS CAS  Google Scholar 

  6. Ravi, V., Shannon, R. M. & Jameson, A. A fast radio burst in the direction of the Carina dwarf spheroidal galaxy.Astrophys. J.799, L5 (2015)

    Article ADS  Google Scholar 

  7. Champion, D. J. et al. Five new fast radio bursts from the HTRU high latitude survey: first evidence for two-component bursts. Preprint athttp://arxiv.org/abs/1511.07746 (2015)

  8. Masui, K. et al. Dense magnetized plasma associated with a fast radio burst.Nature528, 523–525 (2015)

    Article ADS CAS  Google Scholar 

  9. Petroff, E. et al. A survey of FRB fields: limits on repeatability.Mon. Not. R. Astron. Soc.454, 457–462 (2015)

    Article ADS  Google Scholar 

  10. Falcke, H. & Rezzolla, L. Fast radio bursts: the last sign of supramassive neutron stars.Astron. Astrophys.562, A137 (2014)

    Article ADS  Google Scholar 

  11. Cordes, J. M. & Wasserman, I. Supergiant pulses from extragalactic neutron stars.Mon. Not. R. Astron. Soc.457, 232–257 (2016)

    Article ADS CAS  Google Scholar 

  12. Pen, U.-L. & Connor, L. Local circumnuclear magnetar solution to extragalactic fast radio bursts.Astrophys. J.807, 179 (2015)

    Article ADS  Google Scholar 

  13. Cordes, J. M. et al. Arecibo pulsar survey using ALFA. I. Survey strategy and first discoveries.Astrophys. J.637, 446–455 (2006)

    Article ADS  Google Scholar 

  14. Lazarus, P. et al. Arecibo pulsar survey using ALFA. IV. Mock spectrometer data analysis, survey sensitivity, and the discovery of 40 pulsars.Astrophys. J.812, 81 (2015)

    Article ADS  Google Scholar 

  15. Cordes, J. M. & Lazio, T. J. W. NE 2001.I. A new model for the galactic distribution of free electrons and its fluctuations. Preprint athttp://arxiv.org/abs/astro-ph/0207156 (2002)

  16. Ransom, S. M.New Search Techniques for Binary Pulsars.http://www.cv.nrao.edu/~sransom/ransom_thesis_2001.pdf, PhD thesis, Harvard Univ. (2001)

  17. Karako-Argaman, C. et al. Discovery and follow-up of rotating radio transients with the Green Bank and LOFAR telescopes.Astrophys. J.809, 67 (2015)

    Article ADS  Google Scholar 

  18. Wolszczan, A. & Cordes, J. M. Interstellar interferometry of the pulsar PSR 1237+25.Astrophys. J.320, L35–L39 (1987)

    Article ADS CAS  Google Scholar 

  19. Kulkarni, S. R., Ofek, E. O. & Neill, J. D. The Arecibo fast radio burst: dense circum-burst medium. Preprint athttp://arxiv.org/abs/1511.09137 (2015)

  20. Camilo, F. et al. Transient pulsed radio emission from a magnetar.Nature442, 892–895 (2006)

    Article ADS CAS  Google Scholar 

  21. Hansen, B. M. S. & Lyutikov, M. Radio and X-ray signatures of merging neutron stars.Mon. Not. R. Astron. Soc.322, 695–701 (2001)

    Article ADS  Google Scholar 

  22. Loeb, A., Shvartzvald, Y. & Maoz, D. Fast radio bursts may originate from nearby flaring stars.Mon. Not. R. Astron. Soc.439, L46–L50 (2014)

    Article ADS  Google Scholar 

  23. Mottez, F. & Zarka, P. Radio emissions from pulsar companions: a refutable explanation for galactic transients and fast radio bursts.Astron. Astrophys.569, A86 (2014)

    Article ADS  Google Scholar 

  24. Lyubarsky, Y. A model for fast extragalactic radio bursts.Mon. Not. R. Astron. Soc.442, L9–L13 (2014)

    Article ADS  Google Scholar 

  25. Karuppusamy, R., Stappers, B. W. & van Straten, W. Giant pulses from the Crab pulsar. A wide-band study.Astron. Astrophys.515, A36 (2010)

    Article ADS  Google Scholar 

  26. Hankins, T. H. & Eilek, J. A. Radio emission signatures in the Crab pulsar.Astrophys. J.670, 693–701 (2007)

    Article ADS CAS  Google Scholar 

  27. Keane, E. F., Stappers, B. W., Kramer, M. & Lyne, A. G. On the origin of a highly dispersed coherent radio burst.Mon. Not. R. Astron. Soc.425, L71–L75 (2012)

    Article ADS  Google Scholar 

  28. Bannister, K. W. & Madsen, G. J. A Galactic origin for the fast radio burst FRB010621.Mon. Not. R. Astron. Soc.440, 353–358 (2014)

    Article ADS CAS  Google Scholar 

  29. Scholz, P. et al. Timing of five millisecond pulsars discovered in the PALFA survey.Astrophys. J.805, 85 (2015)

    Article ADS  Google Scholar 

  30. Theureau, G. et al. PSRs J0248+6021 and J2240+5832: young pulsars in the northern Galactic plane. Discovery, timing, and gamma-ray observations.Astron. Astrophys.525, A94 (2011)

    Article  Google Scholar 

  31. McLaughlin, M. A. et al. Transient radio bursts from rotating neutron stars.Nature439, 817–820 (2006)

    Article ADS CAS  Google Scholar 

  32. You, X. P., Coles, W. A., Hobbs, G. B. & Manchester, R. N. Measurement of the electron density and magnetic field of the solar wind using millisecond pulsars.Mon. Not. R. Astron. Soc.422, 1160–1165 (2012)

    Article ADS  Google Scholar 

  33. The NANOGrav Collaboration. The NANOGrav nine-year data set: observations, arrival time measurements, and analysis of 37 millisecond pulsars.Astrophys. J.813, 65 (2015)

  34. Rickett, B. J. Radio propagation through the turbulent interstellar plasma.Annu. Rev. Astron. Astrophys.28, 561–605 (1990)

    Article ADS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Arecibo Observatory, and in particular A. Venkataraman, H. Hernandez, P. Perillat and J. Schmelz, for their continued support and dedication to enabling observations like those presented here. We also thank our commensal observing partners from the Arecibo ‘Zone of Avoidance’ team, in particular T. McIntyre and T. Henning. We thank M. Kramer for suggestions. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association. These data were processed using the McGill University High Performance Computing Centre operated by Compute Canada and Calcul Québec. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007-2013). L.G.S., P.C.C.F. and P.L. gratefully acknowledge financial support from the ERC Starting Grant BEACON under contract number 279702. J.W.T.H. is an NWO Vidi Fellow and gratefully acknowledges funding for this work from ERC Starting Grant DRAGNET under contract number 337062. Work at Cornell (J.M.C., S.C., A.B.) was supported by NSF grants AST-1104617 and AST-1008213. V.M.K. holds the Lorne Trottier Chair in Astrophysics and Cosmology and a Canadian Research Chair in Observational Astrophysics and received additional support from NSERC via a Discovery Grant and Accelerator Supplement, by FQRNT via the Centre de Recherche Astrophysique de Québec, and by the Canadian Institute for Advanced Research. J.v.L. acknowledges funding for this research from an ERC Consolidator Grant under contract number 617199. Pulsar research at UBC is supported by an NSERC Discovery Grant and by the Canadian Institute for Advanced Research.

Author information

Authors and Affiliations

  1. Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn, B-53121, Germany

    L. G. Spitler, P. C. C. Freire, P. Lazarus & W. W. Zhu

  2. Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, H3A 2T8, Quebec, Canada

    P. Scholz, R. D. Ferdman, V. M. Kaspi, E. C. Madsen, C. Patel & I. H. Stairs

  3. ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands

    J. W. T. Hessels & J. van Leeuwen

  4. Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, XH Amsterdam, 1098, The Netherlands

    J. W. T. Hessels & J. van Leeuwen

  5. Columbia Astrophysics Laboratory, Columbia University, New York, 10027, New York, USA

    S. Bogdanov & F. Camilo

  6. Department of Astronomy and Space Sciences, Cornell University, Ithaca, 14853, New York, USA

    A. Brazier, S. Chatterjee & J. M. Cordes

  7. Cornell Center for Advanced Computing, Cornell University, Ithaca, 14853, New York, USA

    A. Brazier

  8. Square Kilometre Array South Africa, Pinelands, 7405, South Africa

    F. Camilo

  9. Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, 17604-3003, Pennsylvania, USA

    F. Crawford

  10. National Research Council, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington DC, 20375, USA

    J. Deneva

  11. National Radio Astronomy Observatory, PO Box 2, Green Bank, 24944, West Virginia, USA

    R. Lynch

  12. Department of Physics and Astronomy, West Virginia University, Morgantown, 26506, West Virginia, USA

    R. Lynch & M. A. McLaughlin

  13. National Radio Astronomy Observatory, Charlottesville, 22903, West Virginia, USA

    S. M. Ransom

  14. Arecibo Observatory, HC3 Box 53995, Arecibo, 00612, Puerto Rico, USA

    A. Seymour

  15. Department of Physics and Astronomy, University of British Columbia, Agricultural Road, Vancouver, 6224, V6T 1Z1, British Columbia, Canada

    I. H. Stairs

  16. Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK

    B. W. Stappers

Authors
  1. L. G. Spitler
  2. P. Scholz
  3. J. W. T. Hessels
  4. S. Bogdanov
  5. A. Brazier
  6. F. Camilo
  7. S. Chatterjee
  8. J. M. Cordes
  9. F. Crawford
  10. J. Deneva
  11. R. D. Ferdman
  12. P. C. C. Freire
  13. V. M. Kaspi
  14. P. Lazarus
  15. R. Lynch
  16. E. C. Madsen
  17. M. A. McLaughlin
  18. C. Patel
  19. S. M. Ransom
  20. A. Seymour
  21. I. H. Stairs
  22. B. W. Stappers
  23. J. van Leeuwen
  24. W. W. Zhu

Contributions

L.G.S. and J.W.T.H. led the design and execution of the observing campaign described here. P.S. performed the analysis that discovered the radio bursts. More detailed analysis of the signal properties was done by L.G.S., P.S., S.M.R., M.A.M., J.W.T.H., S.C. and J.M.C. L.G.S., J.W.T.H., P.S. and V.M.K. led the writing of the manuscript. All authors contributed substantially to the interpretation of the analysis results and to the final version of the manuscript.

Corresponding author

Correspondence toJ. W. T. Hessels.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Table 1 Arecibo FRB 121102 discovery and follow-up observations
Extended Data Table 2 FRB 121102 gridding positions

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spitler, L., Scholz, P., Hessels, J.et al. A repeating fast radio burst.Nature531, 202–205 (2016). https://doi.org/10.1038/nature17168

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

FRB 121102's repeat performance

Fast radio bursts (FRBs) are transient radio pulses that last a few milliseconds. They are thought to be extragalactic, and are of unknown physical origin. Many FRB models have proposed the cause to be one-time-only cataclysmic events. Follow-up monitoring of detected bursts did not reveal repeat bursts, consistent with such models. However, this paper reports ten additional bursts from the direction of FRB 121102, demonstrating that its source survived the energetic events that caused the bursts. Although there may be multiple physical origins for the burst, the repeating bursts seen from FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp