Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Population genomics of Bronze Age Eurasia

Naturevolume 522pages167–172 (2015)Cite this article

Subjects

Abstract

The Bronze Age of Eurasia (around 3000–1000BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution maps of ancient samples.
Figure 2: Genetic structure of ancient Europe and the Pontic-Caspian steppe.
Figure 3: Genetic structure of Bronze Age Asia.
Figure 4: Allele frequencies for putatively positively selected SNPs.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

Data deposits

DNA sequence alignments are available from the European Nucleotide Archive (http://www.ebi.ac.uk/ena) under accession numberPRJEB9021.

References

  1. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia.Nature514, 445–449 (2014)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  2. Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years.Science346, 1113–1118 (2014)

    Article ADS CAS PubMed  Google Scholar 

  3. Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia.Science334, 94–98 (2011)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  4. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans.Nature505, 87–91 (2014)

    Article ADS CAS PubMed  Google Scholar 

  5. Raghavan, M. et al. The genetic prehistory of the New World Arctic.Science345, 1255832 (2014)

    Article PubMed CAS  Google Scholar 

  6. Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana.Nature506, 225–229 (2014)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  7. Bramanti, B. et al. Genetic discontinuity between local hunter-gatherers and Central Europe’s first farmers.Science326, 137–140 (2009)

    Article ADS CAS PubMed  Google Scholar 

  8. Malmström, H. et al. Ancient DNA reveals lack of continuity between Neolithic hunter-gatherers and contemporary Scandinavians.Curr. Biol.19, 1758–1762 (2009)

    Article PubMed CAS  Google Scholar 

  9. Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.Science336, 466–469 (2012)

    Article ADS CAS PubMed  Google Scholar 

  10. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans.Nature513, 409–413 (2014)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  11. Haak, W. et al. Ancient DNA from European early Neolithic farmers reveals their Near Eastern affinities.PLoS Biol.8, e1000536 (2010)

    Article PubMed PubMed Central CAS  Google Scholar 

  12. Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory.Nature Commun.5, 5257 (2014)

    Article ADS CAS  Google Scholar 

  13. Kristiansen, K. inThe World System and the Earth System. Global Socioenvironmental Change and Sustainability Since the Neolithic (eds Hornborg, B. & Crumley, C.) (Left Coast Press, 2007)

    Google Scholar 

  14. Shishlina, N.Reconstruction of the Bronze Age of the Caspian Steppes. Life Styles and Life Ways of Pastoral Nomads. Vol. 1876 (Archaeopress, 2008)

    Google Scholar 

  15. Anthony, D.The Horse, The Wheel and Language. How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World (Princeton Univ. Press, 2007)

    Google Scholar 

  16. Harrison, R. & Heyd, V. The Transformation of Europe in the third millennium BC: the example of ‘Le Petit-Chasseur I + III’ (Sion, Valais, Switzerland).Praehistorische Zeitschrift.82, 129–214 (2007)

    Article  Google Scholar 

  17. Vandkilde, H.Culture and Change in the Central European Prehistory, 6th to 1st millennium BC (Aarhus Univ. Press, 2007)

    Google Scholar 

  18. Kristiansen, K. & Larsson, T.The Rise of Bronze Age Society. Travels, Transmissions and Transformations (Cambridge Univ. Press, 2005)

    Google Scholar 

  19. Hanks, B. K., Epimakhov, A. V. & Renfrew, A. C. Towards a refined chronology for the Bronze Age of the southern Urals, Russia.Antiquity81, 353–367 (2007)

    Article  Google Scholar 

  20. Kuznetsov, P. F. The emergence of Bronze Age chariots in Eastern Europe.Antiquity80, 638–645 (2006)

    Article  Google Scholar 

  21. Koryakova, L. & Epimakhov, A. V.The Urals and Western Siberia in the Bronze and Iron Ages (Cambridge Univ. Press, 2007)

    Book  Google Scholar 

  22. Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo.Nature463, 757–762 (2010)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  23. Carpenter, M. L. et al. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries.Am. J. Hum. Genet.93, 852–864 (2013)

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Barros Damgaard, P. d. et al. Improving access to endogenous DNA in ancient bones and teeth. Preprint atbioRxivhttp://dx.doi.org/10.1101/014985 (2015)

  25. Adler, C. J., Haak, W., Donlon, D., Cooper, A. & The Genographic Consortium Survival and recovery of DNA from ancient teeth and bones.J. Archaeol. Sci.38, 956–964 (2011)

    Article  Google Scholar 

  26. Orlando, L. et al. True single-molecule DNA sequencing of a Pleistocene horse bone.Genome Res.21, 1705–1719 (2011)

    Article CAS PubMed PubMed Central  Google Scholar 

  27. Olalde, I. & Lalueza-Fox, C. Modern humans’ paleogenomics and the new evidences on the European prehistory.Science and Technology of Archaeological Research1,http://dx.doi.org/10.1179/2054892315Y.0000000002 (2015)

  28. Grigoriev, S.Ancient Indo-Europeans (Charoid, 2002)

    Google Scholar 

  29. Bendezu-Sarmiento, J.De l’Âge du Bronze et lÂge du Fer au Kazakkstan, gestes funéraires et paramètres biologiques. Identités culturelles des population Andronovo et Saka (De Boccard, 2007)

    Google Scholar 

  30. Kozintsev, A. G., Gromov, A. V. & Moiseyev, V. G. Collateral relatives of American Indians among the Bronze Age populations of Siberia?Am. J. Phys. Anthropol.108, 193–204 (1999)

    Article CAS PubMed  Google Scholar 

  31. Kristiansen, K. inBecoming European. The transformation of third millennium Northern and Western Europe (eds Prescott, C. & Glørstad, H.) (Oxbow Books, 2012)

    Google Scholar 

  32. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe.Naturehttp://dx.doi.org/10.1038/nature14317 (this issue)

  33. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.Nature507, 225–228 (2014)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  34. Itan, Y., Powell, A., Beaumont, M. A., Burger, J. & Thomas, M. G. The origins of lactase persistence in Europe.PLoS Computational Biol.5, e1000491 (2009)

    Article ADS MathSciNet CAS  Google Scholar 

  35. Mallory, J.In Search of the Indo-Europeans. Language, Archaeology and Myth (Thames & Hudson, 1987)

    Google Scholar 

  36. Renfrew, A. C.Archaeology and Language. The Puzzle of Indo-European Origins (Penguin, 1987)

    Google Scholar 

  37. Mallory, J. & Mair, V.The Tarim Mummies. Ancient China and the Mystery of the Earliest People from the West (Thames & Hudson, 2000)

    Google Scholar 

  38. Keyser, C. et al. Ancient DNA provides new insights into the history of south Siberian Kurgan people.Hum. Genet.126, 395–410 (2009)

    Article CAS PubMed  Google Scholar 

  39. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing.Cold Spring Harb. Protocols (2010)

  40. Orlando, L. et al. RecalibratingEquus evolution using the genome sequence of an early Middle Pleistocene horse.Nature499, 74–78 (2013)

    Article ADS CAS PubMed  Google Scholar 

  41. Malaspinas, A.-S. et al. Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil.Curr. Biol.24, R1035–R1037 (2014)

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Willerslev, E. & Cooper, A. Ancient DNA.Proc. Royal Soc. B272, 3–16 (2005)

    Article CAS  Google Scholar 

  43. Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal.Proc. Natl Acad. Sci. USA104, 14616–14621 (2007)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  44. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform.Bioinformatics25, 1754–1760 (2009)

    CAS PubMed PubMed Central  Google Scholar 

  45. Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes.BMC Genomics13, 178 (2012)

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Li, H. et al. The Sequence Alignment/Map format and SAMtools.Bioinformatics25, 2078–2079 (2009)

    Article PubMed PubMed Central CAS  Google Scholar 

  47. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.Bioinformatics26, 841–842 (2010)

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters.Bioinformatics (2013)

  49. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China.Proc. Natl Acad. Sci. USA110, 2223–2227 (2013)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  50. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data.BMC Bioinformatics15, (2014)

  51. Patterson, N., Price, A. L. & Reich, D. Population structure and Eigenanalysis.PLoS Genet.2, e190 (2006)

    Article PubMed PubMed Central CAS  Google Scholar 

  52. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals.Genome Res.19, 1655–1664 (2009)

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Patterson, N. et al. Ancient admixture in human history.Genetics192, 1065–1093 (2012)

    Article PubMed PubMed Central  Google Scholar 

  54. Weir, B. S. & Hill, W. Estimating F-statistics.Annu. Rev. Genet.36, 721–750 (2002)

    Article CAS PubMed  Google Scholar 

  55. Nyström, V. et al. Microsatellite genotyping reveals end-Pleistocene decline in mammoth autosomal genetic variation.Mol. Ecol.21, 3391–3402 (2012)

    Article PubMed CAS  Google Scholar 

  56. Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering.Am. J. Hum. Genet.81, 1084–1097 (2007)

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Magnussen, L. A. Petersen, C. D. Mortensen and A. Seguin-Orlando at the Danish National Sequencing Centre for help with the sequencing. We thank C. G. Zacho for technical assistance. The project was funded by The European Research Council (FP/2007-2013, grant no. 269442, The Rise), The University of Copenhagen (KU2016 programme), Marie Curie Actions of the European Union (FP7/2007-2013, grant no. 300554), The Villum Foundation (Young Investigator Programme, grant no. 10120), Frederik Paulsen, The Miller Institute, University of California, Berkeley, The Lundbeck Foundation, and The Danish National Research Foundation.

Author information

Author notes
  1. Morten E. Allentoft and Martin Sikora: These authors contributed equally to this work.

Authors and Affiliations

  1. Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark

    Morten E. Allentoft, Martin Sikora, Morten Rasmussen, Jesper Stenderup, Peter B. Damgaard, Hannes Schroeder, Lasse Vinner, Anna-Sapfo Malaspinas, Ashot Margaryan, Ludovic Orlando & Eske Willerslev

  2. Department of Historical Studies, University of Gothenburg, Gothenburg, 405 30, Sweden

    Karl-Göran Sjögren, Dalia Pokutta & Kristian Kristiansen

  3. Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs Lyngby, 2800, Denmark

    Simon Rasmussen, Thomas Sicheritz-Pontén & Søren Brunak

  4. Faculty of Archaeology, Leiden University, Leiden, 2300, The Netherlands

    Hannes Schroeder

  5. Department of Archaeology and Ancient History, Lund University, Lund, 221 00, Sweden

    Torbjörn Ahlström

  6. Oxford Radiocarbon Accelerator Unit, University of Oxford, Oxford, OX1 3QY, UK

    Tom Higham & David Chivall

  7. Department of Forensic Medicine, Unit of Forensic Anthropology, University of Copenhagen, Copenhagen, 2100, Denmark

    Niels Lynnerup & Lise Harvig

  8. Institute of Archaeology, University of Wrocław, Wrocław, 50-139, Poland

    Justyna Baron, Mirosław Furmanek, Tomasz Gralak & Irena Lasak

  9. Archaeological Institute, University of Zurich, Zurich, CH-8006, Switzerland

    Philippe Della Casa

  10. Department of Anatomy, Wrocław Medical University, Wrocław, 50-368, Poland

    Paweł Dąbrowski

  11. Department of Anthropology, University of Toronto, Toronto, ONM5S 2S2, Canada

    Paul R. Duffy

  12. Department of Archeology and General History, Gorno-Altaisk State University, Gorno-Altaisk, 649000, Russia

    Alexander V. Ebel

  13. Institute of History and Archaeology RAS (South Ural Department), South Ural State University, Chelyabinsk, 454080, Russia

    Andrey Epimakhov

  14. Environmental Research and Material Science and Centre for Textile Research, The National Museum of Denmark, Copenhagen K, 1471, Denmark

    Karin Frei

  15. Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, St Petersburg, 199034, Russia

    Andrey Gromov, Valeri Khartanovich & Vyacheslav Moiseyev

  16. Department of Anthropology, Polish Academy of Sciences, Wrocław, 50–449, Poland

    Stanisław Gronkiewicz

  17. Biocentre of the Ludwig-Maximilian-University München, Munich, 82152, Germany

    Gisela Grupe & George McGlynn

  18. Department of Biological Anthropology, Institute of Biology, Eötvös Loránd University, Budapest, H-1117, Hungary

    Tamás Hajdu

  19. Department of Anthropology, Hungarian Natural History Museum, Budapest, H-1083, Hungary

    Tamás Hajdu

  20. The Archaeological Museum of Wrocław, Wrocław, 50-077, Poland

    Radosław Jarysz

  21. Samara State Academy of Social Science and Humanities, Samara, 443099, Russia

    Alexandr Khokhlov

  22. Institute of Archaeology of the Hungarian Academy of Sciences, Research Center for the Humanities, Budapest, H-1250, Hungary

    Viktória Kiss & Vajk Szeverényi

  23. Institute of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, CZ-602 00, Czech Republic

    Jan Kolář

  24. Department of Vegetation Ecology, Institute of Botany of the Czech Academy of Sciences, Brno, CZ-602 00, Czech Republic

    Jan Kolář

  25. Department of Archaeology, University of Tartu, Tartu, 51003, Estonia

    Aivar Kriiska & Liivi Varul

  26. Archaeological Superintendence of Lombardy, Milano, 20123, Italy

    Cristina Longhi

  27. Department of Archaeology, University of Vilnius, Vilnius, LT-01513, Lithuania

    Algimantas Merkevicius

  28. The SAXO Institute, University of Copenhagen, Copenhagen S, 2300, Denmark

    Inga Merkyte

  29. Department of Evolutionary Biology, Estonian Biocentre and University of Tartu, Tartu, 51010, Estonia

    Mait Metspalu & Lehti Saag

  30. Department of History, Yerevan State University, Yerevan, 0025, Armenia

    Ruzan Mkrtchyan

  31. Hungarian National Museum, Budapest, H-1083, Hungary

    László Paja

  32. Department of Biological Anthropology, University of Szeged, Szeged, H-6726, Hungary

    László Paja & György Pálfi

  33. Institute of Archaeology and Ethnology of the Polish Academy of Sciences, Poznań, 61-612, Poland

    Łukasz Pospieszny

  34. Laboratory for Archaeological Chemistry, University of Wisconsin-Madison, Madison, 53706, Wisconsin, USA

    T. Douglas Price

  35. Zoological Institute of the Russian Academy of Sciences, St Petersburg, 199034, Russia

    Mikhail Sablin

  36. Department of Archaeology, State Historical Museum, Moscow, 109012, Russia

    Natalia Shishlina

  37. Institute for History of Medicine and Foreign Languages of the First Faculty of Medicine, Charles University, Prague, 121 08, Czech Republic

    Václav Smrčka

  38. Research Center for the History and Culture of the Turkic Peoples, Gorno-Altaisk State University, Gorno-Altaisk, 649000, Russia

    Vasilii I. Soenov & Synaru V. Trifanova

  39. Department of Pre- and Early History, Institute of Archaeological Sciences, Faculty of Humanities, Eötvös Loránd University, Budapest, H-1088, Hungary

    Gusztáv Tóth

  40. Matrica Museum, Százhalombatta, 2440, Hungary

    Magdolna Vicze

  41. Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences, Yerevan, 0014, Armenia

    Levon Yepiskoposyan

  42. Department of Archaeology, Faculty of History, Moscow State University, Moscow, 119991, Russia

    Vladislav Zhitenev

  43. Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark

    Søren Brunak

  44. Center for Theoretical Evolutionary Genetics, University of California, Berkeley, 94720-3140, California, USA

    Rasmus Nielsen

Authors
  1. Morten E. Allentoft
  2. Martin Sikora
  3. Karl-Göran Sjögren
  4. Simon Rasmussen
  5. Morten Rasmussen
  6. Jesper Stenderup
  7. Peter B. Damgaard
  8. Hannes Schroeder
  9. Torbjörn Ahlström
  10. Lasse Vinner
  11. Anna-Sapfo Malaspinas
  12. Ashot Margaryan
  13. Tom Higham
  14. David Chivall
  15. Niels Lynnerup
  16. Lise Harvig
  17. Justyna Baron
  18. Philippe Della Casa
  19. Paweł Dąbrowski
  20. Paul R. Duffy
  21. Alexander V. Ebel
  22. Andrey Epimakhov
  23. Karin Frei
  24. Mirosław Furmanek
  25. Tomasz Gralak
  26. Andrey Gromov
  27. Stanisław Gronkiewicz
  28. Gisela Grupe
  29. Tamás Hajdu
  30. Radosław Jarysz
  31. Valeri Khartanovich
  32. Alexandr Khokhlov
  33. Viktória Kiss
  34. Jan Kolář
  35. Aivar Kriiska
  36. Irena Lasak
  37. Cristina Longhi
  38. George McGlynn
  39. Algimantas Merkevicius
  40. Inga Merkyte
  41. Mait Metspalu
  42. Ruzan Mkrtchyan
  43. Vyacheslav Moiseyev
  44. László Paja
  45. György Pálfi
  46. Dalia Pokutta
  47. Łukasz Pospieszny
  48. T. Douglas Price
  49. Lehti Saag
  50. Mikhail Sablin
  51. Natalia Shishlina
  52. Václav Smrčka
  53. Vasilii I. Soenov
  54. Vajk Szeverényi
  55. Gusztáv Tóth
  56. Synaru V. Trifanova
  57. Liivi Varul
  58. Magdolna Vicze
  59. Levon Yepiskoposyan
  60. Vladislav Zhitenev
  61. Ludovic Orlando
  62. Thomas Sicheritz-Pontén
  63. Søren Brunak
  64. Rasmus Nielsen
  65. Kristian Kristiansen
  66. Eske Willerslev

Contributions

E.W. and K.K. initiated and led the study. M.E.A., J.S., L.V., H.S., P.B.D., A.M., M.R., L.S. performed the DNA laboratory work. M.Si., S.R., M.E.A., A.-S.M., P.B.D., A.M. analysed the genetic data. K.-G.S., T.A., N.L., L.H., J.B., P.D.C., P.D., P.R.D., A.E., A.V.E., K.F., M.F., G.G., T.G., A.G., S.G., T.H., R.J., J.K., V.K., A.K., V.K., A.K., I.L., C.L., A.M., G.M., I.M., M.M., R.M., V.M., D.Po., G.P., L.P., D.Pr., L.P., M.Sa., N.S., V.Sm., V.Sz., V.I.S., G.T., S.V.T., L.V., M.V., L.Y., V.Z. collected the samples and/or provided input to the archaeological interpretations. T.H. and D.C. conducted radiocarbon dating. T.S.-P., L.O., S.B., R.N. provided input to the genetic analyses. E.W., K.K., M.E.A., M.Si., K.-G.S. wrote the paper with input from all co-authors.

Corresponding author

Correspondence toEske Willerslev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Principal component analysis of ancient genomes.

a,b, Principal component analysis of ancient individuals projected onto contemporary individuals from non-African populations (a), Europe, West Asia and the Caucasus (b). Grey labels represent population codes indicating coordinates for individuals (small) and median of the population (large). Coloured labels indicate positions for ancient individuals (small) and median for ancient groups (large). Ancient individuals within a group are connected to the respective median position by coloured lines.

Extended Data Figure 2 Pairwise outgroupf3 statistics.

Panels depict pairwise plots of outgroupf3 statistics of the formf3(Ju’hoan North;Population1, Population2), showing the correlation of the amount of shared genetic drift for a pair of ancient groups (Population1) with all modern populations (Population2) in the Human Origins data set (panel A). Closely related ancient groups are expected to show highly correlated statistics.a, Sintashta/Corded Ware.b, Yamnaya/Afanasievo.c, Sintashta/Andronovo.d, Okunevo/Mal’ta. Coloured circles indicate modern populations; error bars indicate ± 1 standard error from the block jackknife.

Extended Data Figure 3 Yamnaya ancestry mirrors Mal’ta ancestry in present-day Europeans and Caucasians.

Panels show pairwise plots of D-statistics D(Outgroup, Ancient)(Bedouin, Modern), contrasting Mal’ta (MA1) and Hunter-gatherers (a), and MA1 and Yamnaya (b). Coloured labels indicate modern populations, with lines corresponding to ± 1 standard error of the respectiveD-statistic from block jacknife. Text away from the diagonal line indicates an ancient group with relative increase in allele sharing with the respective modern populations.

Extended Data Figure 4 Genetic differentiation between ancient and modern groups in Human Origins data set.

Panels showFST between pairs of modern and ancient groups (coloured lines) for subsets of ancient groups, with results for the remaining groups in the background (grey). Top, early Europeans. Middle, Bronze Age Europeans and steppe/Caucasus. Bottom, Bronze Age Asians. Results based on Human Origins data set (panel A).

Extended Data Figure 5 Genetic differentiation between ancient and modern groups in 1000 Genomes data set.

Matrix of pairwiseFST values between modern and ancient groups in the 1000 Genomes data set (panel B).

Extended Data Figure 6 Distribution of uniparental lineages in Bronze Age Eurasians.

a,b, Barplots showing the relative frequency of Y chromosome (a) and mitochondrial DNA lineages (b) in different Bronze Age groups. Top row shows overall frequencies for all individuals combined.

Extended Data Figure 7 Derived allele frequencies for lactase persistence in modern and ancient groups.

Derived allele frequency of rs4988235 in theLCT gene inferred from imputation of ancient individuals. Numbers indicate the total number of chromosomes for each group.

Extended Data Table 1 Selected D-test results from 1000 Genomes data set (panel B)
Extended Data Table 2f3 statistic results for ancient groups

Supplementary information

Supplementary Information

This file contains Supplementary Information sections 1-6. Section 1: An introduction to the sampled cultures and their dating. Section 2: Brief description of the samples (including Supplementary Tables 1-3). Section 3: Laboratory work and sample selection (including Supplementary Tables 4-5, and Supplementary Figure 1). Section 4: Radiocarbon dating. Section 5: Bioinformatics and DNA authentication. Section 6: Population genomics (including Supplementary Table 9 and Supplementary Figures 2-6). (PDF 4331 kb)

Supplementary Table 6

This table contains sequencing summary statistics. (XLSX 20 kb)

Supplementary Table 7

This table contains an overview of aDNA damage statistics. (XLS 44 kb)

Supplementary Table 8

This table contains results of DNA contamination tests. (XLSX 18 kb)

Supplementary Table 10

This table contains D-test for all combinations D(Outgroup,Ancient1)(Ancient2)(Ancient3); 1000 Genomes dataset. (XLSX 1915 kb)

Supplementary Table 11

This table contains “Outgroup” f3-statistics for all combinations of ancient and modern groups; Human Origins dataset. (XLSX 748 kb)

Supplementary Table 12

This table contains all-pair “admixture” f3-statistics; 1000 Genomes dataset. (XLSX 3921 kb)

Supplementary Table 13

This table contains derived allele frequencies of 104 SNP catalogue for putative selection; 1000 Genomes dataset. (XLSX 63 kb)

Supplementary Table 14

This table contains an overview of mtDNA haplogroups and identified variants. (XLS 97 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allentoft, M., Sikora, M., Sjögren, KG.et al. Population genomics of Bronze Age Eurasia.Nature522, 167–172 (2015). https://doi.org/10.1038/nature14507

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Population changes in Bronze Age Eurasia

Was the Bronze Age of a period of major cultural changes because of circulation of ideas or because of large-scale migrations? The authors sequence and analyse low-coverage genomes from 101 ancient humans from across Eurasia to reveal large-scale population migrations and replacements during this time. Analyses indicate that light skin pigmentation was already frequent among Europeans in the Bronze Age but not lactose tolerance, indicating a more recent onset of positive selection on the latter trait than previously believed. The reported findings are also consistent with the spread of Indo-European languages during the Early Bronze Age reported onpage 207 of this issue.

Associated content

Massive migration from the steppe was a source for Indo-European languages in Europe

  • Wolfgang Haak
  • Iosif Lazaridis
  • David Reich
NatureLetter

Ancient DNA steps into the language debate

  • John Novembre
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp