- Article
- Published:
Population genomics of Bronze Age Eurasia
- Morten E. Allentoft1 na1,
- Martin Sikora1 na1,
- Karl-Göran Sjögren2,
- Simon Rasmussen3,
- Morten Rasmussen1,
- Jesper Stenderup1,
- Peter B. Damgaard1,
- Hannes Schroeder1,4,
- Torbjörn Ahlström5,
- Lasse Vinner1,
- Anna-Sapfo Malaspinas1,
- Ashot Margaryan1,
- Tom Higham6,
- David Chivall6,
- Niels Lynnerup7,
- Lise Harvig7,
- Justyna Baron8,
- Philippe Della Casa9,
- Paweł Dąbrowski10,
- Paul R. Duffy11,
- Alexander V. Ebel12,
- Andrey Epimakhov13,
- Karin Frei14,
- Mirosław Furmanek8,
- Tomasz Gralak8,
- Andrey Gromov15,
- Stanisław Gronkiewicz16,
- Gisela Grupe17,
- Tamás Hajdu18,19,
- Radosław Jarysz20,
- Valeri Khartanovich15,
- Alexandr Khokhlov21,
- Viktória Kiss22,
- Jan Kolář23,24,
- Aivar Kriiska25,
- Irena Lasak8,
- Cristina Longhi26,
- George McGlynn17,
- Algimantas Merkevicius27,
- Inga Merkyte28,
- Mait Metspalu29,
- Ruzan Mkrtchyan30,
- Vyacheslav Moiseyev15,
- László Paja31,32,
- György Pálfi32,
- Dalia Pokutta2,
- Łukasz Pospieszny33,
- T. Douglas Price34,
- Lehti Saag29,
- Mikhail Sablin35,
- Natalia Shishlina36,
- Václav Smrčka37,
- Vasilii I. Soenov38,
- Vajk Szeverényi22,
- Gusztáv Tóth39,
- Synaru V. Trifanova38,
- Liivi Varul25,
- Magdolna Vicze40,
- Levon Yepiskoposyan41,
- Vladislav Zhitenev42,
- Ludovic Orlando1,
- Thomas Sicheritz-Pontén3,
- Søren Brunak3,43,
- Rasmus Nielsen44,
- Kristian Kristiansen2 &
- …
- Eske Willerslev1
Naturevolume 522, pages167–172 (2015)Cite this article
59kAccesses
1433Citations
773Altmetric
Subjects
Abstract
The Bronze Age of Eurasia (around 3000–1000BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Accession codes
Primary accessions
European Nucleotide Archive
Data deposits
DNA sequence alignments are available from the European Nucleotide Archive (http://www.ebi.ac.uk/ena) under accession numberPRJEB9021.
References
Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia.Nature514, 445–449 (2014)
Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years.Science346, 1113–1118 (2014)
Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia.Science334, 94–98 (2011)
Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans.Nature505, 87–91 (2014)
Raghavan, M. et al. The genetic prehistory of the New World Arctic.Science345, 1255832 (2014)
Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana.Nature506, 225–229 (2014)
Bramanti, B. et al. Genetic discontinuity between local hunter-gatherers and Central Europe’s first farmers.Science326, 137–140 (2009)
Malmström, H. et al. Ancient DNA reveals lack of continuity between Neolithic hunter-gatherers and contemporary Scandinavians.Curr. Biol.19, 1758–1762 (2009)
Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.Science336, 466–469 (2012)
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans.Nature513, 409–413 (2014)
Haak, W. et al. Ancient DNA from European early Neolithic farmers reveals their Near Eastern affinities.PLoS Biol.8, e1000536 (2010)
Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory.Nature Commun.5, 5257 (2014)
Kristiansen, K. inThe World System and the Earth System. Global Socioenvironmental Change and Sustainability Since the Neolithic (eds Hornborg, B. & Crumley, C.) (Left Coast Press, 2007)
Shishlina, N.Reconstruction of the Bronze Age of the Caspian Steppes. Life Styles and Life Ways of Pastoral Nomads. Vol. 1876 (Archaeopress, 2008)
Anthony, D.The Horse, The Wheel and Language. How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World (Princeton Univ. Press, 2007)
Harrison, R. & Heyd, V. The Transformation of Europe in the third millennium BC: the example of ‘Le Petit-Chasseur I + III’ (Sion, Valais, Switzerland).Praehistorische Zeitschrift.82, 129–214 (2007)
Vandkilde, H.Culture and Change in the Central European Prehistory, 6th to 1st millennium BC (Aarhus Univ. Press, 2007)
Kristiansen, K. & Larsson, T.The Rise of Bronze Age Society. Travels, Transmissions and Transformations (Cambridge Univ. Press, 2005)
Hanks, B. K., Epimakhov, A. V. & Renfrew, A. C. Towards a refined chronology for the Bronze Age of the southern Urals, Russia.Antiquity81, 353–367 (2007)
Kuznetsov, P. F. The emergence of Bronze Age chariots in Eastern Europe.Antiquity80, 638–645 (2006)
Koryakova, L. & Epimakhov, A. V.The Urals and Western Siberia in the Bronze and Iron Ages (Cambridge Univ. Press, 2007)
Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo.Nature463, 757–762 (2010)
Carpenter, M. L. et al. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries.Am. J. Hum. Genet.93, 852–864 (2013)
Barros Damgaard, P. d. et al. Improving access to endogenous DNA in ancient bones and teeth. Preprint atbioRxivhttp://dx.doi.org/10.1101/014985 (2015)
Adler, C. J., Haak, W., Donlon, D., Cooper, A. & The Genographic Consortium Survival and recovery of DNA from ancient teeth and bones.J. Archaeol. Sci.38, 956–964 (2011)
Orlando, L. et al. True single-molecule DNA sequencing of a Pleistocene horse bone.Genome Res.21, 1705–1719 (2011)
Olalde, I. & Lalueza-Fox, C. Modern humans’ paleogenomics and the new evidences on the European prehistory.Science and Technology of Archaeological Research1,http://dx.doi.org/10.1179/2054892315Y.0000000002 (2015)
Grigoriev, S.Ancient Indo-Europeans (Charoid, 2002)
Bendezu-Sarmiento, J.De l’Âge du Bronze et lÂge du Fer au Kazakkstan, gestes funéraires et paramètres biologiques. Identités culturelles des population Andronovo et Saka (De Boccard, 2007)
Kozintsev, A. G., Gromov, A. V. & Moiseyev, V. G. Collateral relatives of American Indians among the Bronze Age populations of Siberia?Am. J. Phys. Anthropol.108, 193–204 (1999)
Kristiansen, K. inBecoming European. The transformation of third millennium Northern and Western Europe (eds Prescott, C. & Glørstad, H.) (Oxbow Books, 2012)
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe.Naturehttp://dx.doi.org/10.1038/nature14317 (this issue)
Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.Nature507, 225–228 (2014)
Itan, Y., Powell, A., Beaumont, M. A., Burger, J. & Thomas, M. G. The origins of lactase persistence in Europe.PLoS Computational Biol.5, e1000491 (2009)
Mallory, J.In Search of the Indo-Europeans. Language, Archaeology and Myth (Thames & Hudson, 1987)
Renfrew, A. C.Archaeology and Language. The Puzzle of Indo-European Origins (Penguin, 1987)
Mallory, J. & Mair, V.The Tarim Mummies. Ancient China and the Mystery of the Earliest People from the West (Thames & Hudson, 2000)
Keyser, C. et al. Ancient DNA provides new insights into the history of south Siberian Kurgan people.Hum. Genet.126, 395–410 (2009)
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing.Cold Spring Harb. Protocols (2010)
Orlando, L. et al. RecalibratingEquus evolution using the genome sequence of an early Middle Pleistocene horse.Nature499, 74–78 (2013)
Malaspinas, A.-S. et al. Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil.Curr. Biol.24, R1035–R1037 (2014)
Willerslev, E. & Cooper, A. Ancient DNA.Proc. Royal Soc. B272, 3–16 (2005)
Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal.Proc. Natl Acad. Sci. USA104, 14616–14621 (2007)
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform.Bioinformatics25, 1754–1760 (2009)
Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes.BMC Genomics13, 178 (2012)
Li, H. et al. The Sequence Alignment/Map format and SAMtools.Bioinformatics25, 2078–2079 (2009)
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.Bioinformatics26, 841–842 (2010)
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters.Bioinformatics (2013)
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China.Proc. Natl Acad. Sci. USA110, 2223–2227 (2013)
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data.BMC Bioinformatics15, (2014)
Patterson, N., Price, A. L. & Reich, D. Population structure and Eigenanalysis.PLoS Genet.2, e190 (2006)
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals.Genome Res.19, 1655–1664 (2009)
Patterson, N. et al. Ancient admixture in human history.Genetics192, 1065–1093 (2012)
Weir, B. S. & Hill, W. Estimating F-statistics.Annu. Rev. Genet.36, 721–750 (2002)
Nyström, V. et al. Microsatellite genotyping reveals end-Pleistocene decline in mammoth autosomal genetic variation.Mol. Ecol.21, 3391–3402 (2012)
Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering.Am. J. Hum. Genet.81, 1084–1097 (2007)
Acknowledgements
We thank K. Magnussen, L. A. Petersen, C. D. Mortensen and A. Seguin-Orlando at the Danish National Sequencing Centre for help with the sequencing. We thank C. G. Zacho for technical assistance. The project was funded by The European Research Council (FP/2007-2013, grant no. 269442, The Rise), The University of Copenhagen (KU2016 programme), Marie Curie Actions of the European Union (FP7/2007-2013, grant no. 300554), The Villum Foundation (Young Investigator Programme, grant no. 10120), Frederik Paulsen, The Miller Institute, University of California, Berkeley, The Lundbeck Foundation, and The Danish National Research Foundation.
Author information
Morten E. Allentoft and Martin Sikora: These authors contributed equally to this work.
Authors and Affiliations
Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
Morten E. Allentoft, Martin Sikora, Morten Rasmussen, Jesper Stenderup, Peter B. Damgaard, Hannes Schroeder, Lasse Vinner, Anna-Sapfo Malaspinas, Ashot Margaryan, Ludovic Orlando & Eske Willerslev
Department of Historical Studies, University of Gothenburg, Gothenburg, 405 30, Sweden
Karl-Göran Sjögren, Dalia Pokutta & Kristian Kristiansen
Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
Simon Rasmussen, Thomas Sicheritz-Pontén & Søren Brunak
Faculty of Archaeology, Leiden University, Leiden, 2300, The Netherlands
Hannes Schroeder
Department of Archaeology and Ancient History, Lund University, Lund, 221 00, Sweden
Torbjörn Ahlström
Oxford Radiocarbon Accelerator Unit, University of Oxford, Oxford, OX1 3QY, UK
Tom Higham & David Chivall
Department of Forensic Medicine, Unit of Forensic Anthropology, University of Copenhagen, Copenhagen, 2100, Denmark
Niels Lynnerup & Lise Harvig
Institute of Archaeology, University of Wrocław, Wrocław, 50-139, Poland
Justyna Baron, Mirosław Furmanek, Tomasz Gralak & Irena Lasak
Archaeological Institute, University of Zurich, Zurich, CH-8006, Switzerland
Philippe Della Casa
Department of Anatomy, Wrocław Medical University, Wrocław, 50-368, Poland
Paweł Dąbrowski
Department of Anthropology, University of Toronto, Toronto, ONM5S 2S2, Canada
Paul R. Duffy
Department of Archeology and General History, Gorno-Altaisk State University, Gorno-Altaisk, 649000, Russia
Alexander V. Ebel
Institute of History and Archaeology RAS (South Ural Department), South Ural State University, Chelyabinsk, 454080, Russia
Andrey Epimakhov
Environmental Research and Material Science and Centre for Textile Research, The National Museum of Denmark, Copenhagen K, 1471, Denmark
Karin Frei
Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, St Petersburg, 199034, Russia
Andrey Gromov, Valeri Khartanovich & Vyacheslav Moiseyev
Department of Anthropology, Polish Academy of Sciences, Wrocław, 50–449, Poland
Stanisław Gronkiewicz
Biocentre of the Ludwig-Maximilian-University München, Munich, 82152, Germany
Gisela Grupe & George McGlynn
Department of Biological Anthropology, Institute of Biology, Eötvös Loránd University, Budapest, H-1117, Hungary
Tamás Hajdu
Department of Anthropology, Hungarian Natural History Museum, Budapest, H-1083, Hungary
Tamás Hajdu
The Archaeological Museum of Wrocław, Wrocław, 50-077, Poland
Radosław Jarysz
Samara State Academy of Social Science and Humanities, Samara, 443099, Russia
Alexandr Khokhlov
Institute of Archaeology of the Hungarian Academy of Sciences, Research Center for the Humanities, Budapest, H-1250, Hungary
Viktória Kiss & Vajk Szeverényi
Institute of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, CZ-602 00, Czech Republic
Jan Kolář
Department of Vegetation Ecology, Institute of Botany of the Czech Academy of Sciences, Brno, CZ-602 00, Czech Republic
Jan Kolář
Department of Archaeology, University of Tartu, Tartu, 51003, Estonia
Aivar Kriiska & Liivi Varul
Archaeological Superintendence of Lombardy, Milano, 20123, Italy
Cristina Longhi
Department of Archaeology, University of Vilnius, Vilnius, LT-01513, Lithuania
Algimantas Merkevicius
The SAXO Institute, University of Copenhagen, Copenhagen S, 2300, Denmark
Inga Merkyte
Department of Evolutionary Biology, Estonian Biocentre and University of Tartu, Tartu, 51010, Estonia
Mait Metspalu & Lehti Saag
Department of History, Yerevan State University, Yerevan, 0025, Armenia
Ruzan Mkrtchyan
Hungarian National Museum, Budapest, H-1083, Hungary
László Paja
Department of Biological Anthropology, University of Szeged, Szeged, H-6726, Hungary
László Paja & György Pálfi
Institute of Archaeology and Ethnology of the Polish Academy of Sciences, Poznań, 61-612, Poland
Łukasz Pospieszny
Laboratory for Archaeological Chemistry, University of Wisconsin-Madison, Madison, 53706, Wisconsin, USA
T. Douglas Price
Zoological Institute of the Russian Academy of Sciences, St Petersburg, 199034, Russia
Mikhail Sablin
Department of Archaeology, State Historical Museum, Moscow, 109012, Russia
Natalia Shishlina
Institute for History of Medicine and Foreign Languages of the First Faculty of Medicine, Charles University, Prague, 121 08, Czech Republic
Václav Smrčka
Research Center for the History and Culture of the Turkic Peoples, Gorno-Altaisk State University, Gorno-Altaisk, 649000, Russia
Vasilii I. Soenov & Synaru V. Trifanova
Department of Pre- and Early History, Institute of Archaeological Sciences, Faculty of Humanities, Eötvös Loránd University, Budapest, H-1088, Hungary
Gusztáv Tóth
Matrica Museum, Százhalombatta, 2440, Hungary
Magdolna Vicze
Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences, Yerevan, 0014, Armenia
Levon Yepiskoposyan
Department of Archaeology, Faculty of History, Moscow State University, Moscow, 119991, Russia
Vladislav Zhitenev
Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
Søren Brunak
Center for Theoretical Evolutionary Genetics, University of California, Berkeley, 94720-3140, California, USA
Rasmus Nielsen
- Morten E. Allentoft
Search author on:PubMed Google Scholar
- Martin Sikora
Search author on:PubMed Google Scholar
- Karl-Göran Sjögren
Search author on:PubMed Google Scholar
- Simon Rasmussen
Search author on:PubMed Google Scholar
- Morten Rasmussen
Search author on:PubMed Google Scholar
- Jesper Stenderup
Search author on:PubMed Google Scholar
- Peter B. Damgaard
Search author on:PubMed Google Scholar
- Hannes Schroeder
Search author on:PubMed Google Scholar
- Torbjörn Ahlström
Search author on:PubMed Google Scholar
- Lasse Vinner
Search author on:PubMed Google Scholar
- Anna-Sapfo Malaspinas
Search author on:PubMed Google Scholar
- Ashot Margaryan
Search author on:PubMed Google Scholar
- Tom Higham
Search author on:PubMed Google Scholar
- David Chivall
Search author on:PubMed Google Scholar
- Niels Lynnerup
Search author on:PubMed Google Scholar
- Lise Harvig
Search author on:PubMed Google Scholar
- Justyna Baron
Search author on:PubMed Google Scholar
- Philippe Della Casa
Search author on:PubMed Google Scholar
- Paweł Dąbrowski
Search author on:PubMed Google Scholar
- Paul R. Duffy
Search author on:PubMed Google Scholar
- Alexander V. Ebel
Search author on:PubMed Google Scholar
- Andrey Epimakhov
Search author on:PubMed Google Scholar
- Karin Frei
Search author on:PubMed Google Scholar
- Mirosław Furmanek
Search author on:PubMed Google Scholar
- Tomasz Gralak
Search author on:PubMed Google Scholar
- Andrey Gromov
Search author on:PubMed Google Scholar
- Stanisław Gronkiewicz
Search author on:PubMed Google Scholar
- Gisela Grupe
Search author on:PubMed Google Scholar
- Tamás Hajdu
Search author on:PubMed Google Scholar
- Radosław Jarysz
Search author on:PubMed Google Scholar
- Valeri Khartanovich
Search author on:PubMed Google Scholar
- Alexandr Khokhlov
Search author on:PubMed Google Scholar
- Viktória Kiss
Search author on:PubMed Google Scholar
- Jan Kolář
Search author on:PubMed Google Scholar
- Aivar Kriiska
Search author on:PubMed Google Scholar
- Irena Lasak
Search author on:PubMed Google Scholar
- Cristina Longhi
Search author on:PubMed Google Scholar
- George McGlynn
Search author on:PubMed Google Scholar
- Algimantas Merkevicius
Search author on:PubMed Google Scholar
- Inga Merkyte
Search author on:PubMed Google Scholar
- Mait Metspalu
Search author on:PubMed Google Scholar
- Ruzan Mkrtchyan
Search author on:PubMed Google Scholar
- Vyacheslav Moiseyev
Search author on:PubMed Google Scholar
- László Paja
Search author on:PubMed Google Scholar
- György Pálfi
Search author on:PubMed Google Scholar
- Dalia Pokutta
Search author on:PubMed Google Scholar
- Łukasz Pospieszny
Search author on:PubMed Google Scholar
- T. Douglas Price
Search author on:PubMed Google Scholar
- Lehti Saag
Search author on:PubMed Google Scholar
- Mikhail Sablin
Search author on:PubMed Google Scholar
- Natalia Shishlina
Search author on:PubMed Google Scholar
- Václav Smrčka
Search author on:PubMed Google Scholar
- Vasilii I. Soenov
Search author on:PubMed Google Scholar
- Vajk Szeverényi
Search author on:PubMed Google Scholar
- Gusztáv Tóth
Search author on:PubMed Google Scholar
- Synaru V. Trifanova
Search author on:PubMed Google Scholar
- Liivi Varul
Search author on:PubMed Google Scholar
- Magdolna Vicze
Search author on:PubMed Google Scholar
- Levon Yepiskoposyan
Search author on:PubMed Google Scholar
- Vladislav Zhitenev
Search author on:PubMed Google Scholar
- Ludovic Orlando
Search author on:PubMed Google Scholar
- Thomas Sicheritz-Pontén
Search author on:PubMed Google Scholar
- Søren Brunak
Search author on:PubMed Google Scholar
- Rasmus Nielsen
Search author on:PubMed Google Scholar
- Kristian Kristiansen
Search author on:PubMed Google Scholar
- Eske Willerslev
Search author on:PubMed Google Scholar
Contributions
E.W. and K.K. initiated and led the study. M.E.A., J.S., L.V., H.S., P.B.D., A.M., M.R., L.S. performed the DNA laboratory work. M.Si., S.R., M.E.A., A.-S.M., P.B.D., A.M. analysed the genetic data. K.-G.S., T.A., N.L., L.H., J.B., P.D.C., P.D., P.R.D., A.E., A.V.E., K.F., M.F., G.G., T.G., A.G., S.G., T.H., R.J., J.K., V.K., A.K., V.K., A.K., I.L., C.L., A.M., G.M., I.M., M.M., R.M., V.M., D.Po., G.P., L.P., D.Pr., L.P., M.Sa., N.S., V.Sm., V.Sz., V.I.S., G.T., S.V.T., L.V., M.V., L.Y., V.Z. collected the samples and/or provided input to the archaeological interpretations. T.H. and D.C. conducted radiocarbon dating. T.S.-P., L.O., S.B., R.N. provided input to the genetic analyses. E.W., K.K., M.E.A., M.Si., K.-G.S. wrote the paper with input from all co-authors.
Corresponding author
Correspondence toEske Willerslev.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 Principal component analysis of ancient genomes.
a,b, Principal component analysis of ancient individuals projected onto contemporary individuals from non-African populations (a), Europe, West Asia and the Caucasus (b). Grey labels represent population codes indicating coordinates for individuals (small) and median of the population (large). Coloured labels indicate positions for ancient individuals (small) and median for ancient groups (large). Ancient individuals within a group are connected to the respective median position by coloured lines.
Extended Data Figure 2 Pairwise outgroupf3 statistics.
Panels depict pairwise plots of outgroupf3 statistics of the formf3(Ju’hoan North;Population1, Population2), showing the correlation of the amount of shared genetic drift for a pair of ancient groups (Population1) with all modern populations (Population2) in the Human Origins data set (panel A). Closely related ancient groups are expected to show highly correlated statistics.a, Sintashta/Corded Ware.b, Yamnaya/Afanasievo.c, Sintashta/Andronovo.d, Okunevo/Mal’ta. Coloured circles indicate modern populations; error bars indicate ± 1 standard error from the block jackknife.
Extended Data Figure 3 Yamnaya ancestry mirrors Mal’ta ancestry in present-day Europeans and Caucasians.
Panels show pairwise plots of D-statistics D(Outgroup, Ancient)(Bedouin, Modern), contrasting Mal’ta (MA1) and Hunter-gatherers (a), and MA1 and Yamnaya (b). Coloured labels indicate modern populations, with lines corresponding to ± 1 standard error of the respectiveD-statistic from block jacknife. Text away from the diagonal line indicates an ancient group with relative increase in allele sharing with the respective modern populations.
Extended Data Figure 4 Genetic differentiation between ancient and modern groups in Human Origins data set.
Panels showFST between pairs of modern and ancient groups (coloured lines) for subsets of ancient groups, with results for the remaining groups in the background (grey). Top, early Europeans. Middle, Bronze Age Europeans and steppe/Caucasus. Bottom, Bronze Age Asians. Results based on Human Origins data set (panel A).
Extended Data Figure 5 Genetic differentiation between ancient and modern groups in 1000 Genomes data set.
Matrix of pairwiseFST values between modern and ancient groups in the 1000 Genomes data set (panel B).
Extended Data Figure 6 Distribution of uniparental lineages in Bronze Age Eurasians.
a,b, Barplots showing the relative frequency of Y chromosome (a) and mitochondrial DNA lineages (b) in different Bronze Age groups. Top row shows overall frequencies for all individuals combined.
Extended Data Figure 7 Derived allele frequencies for lactase persistence in modern and ancient groups.
Derived allele frequency of rs4988235 in theLCT gene inferred from imputation of ancient individuals. Numbers indicate the total number of chromosomes for each group.
Supplementary information
Supplementary Information
This file contains Supplementary Information sections 1-6. Section 1: An introduction to the sampled cultures and their dating. Section 2: Brief description of the samples (including Supplementary Tables 1-3). Section 3: Laboratory work and sample selection (including Supplementary Tables 4-5, and Supplementary Figure 1). Section 4: Radiocarbon dating. Section 5: Bioinformatics and DNA authentication. Section 6: Population genomics (including Supplementary Table 9 and Supplementary Figures 2-6). (PDF 4331 kb)
Supplementary Table 6
This table contains sequencing summary statistics. (XLSX 20 kb)
Supplementary Table 7
This table contains an overview of aDNA damage statistics. (XLS 44 kb)
Supplementary Table 8
This table contains results of DNA contamination tests. (XLSX 18 kb)
Supplementary Table 10
This table contains D-test for all combinations D(Outgroup,Ancient1)(Ancient2)(Ancient3); 1000 Genomes dataset. (XLSX 1915 kb)
Supplementary Table 11
This table contains “Outgroup” f3-statistics for all combinations of ancient and modern groups; Human Origins dataset. (XLSX 748 kb)
Supplementary Table 12
This table contains all-pair “admixture” f3-statistics; 1000 Genomes dataset. (XLSX 3921 kb)
Supplementary Table 13
This table contains derived allele frequencies of 104 SNP catalogue for putative selection; 1000 Genomes dataset. (XLSX 63 kb)
Supplementary Table 14
This table contains an overview of mtDNA haplogroups and identified variants. (XLS 97 kb)
Rights and permissions
About this article
Cite this article
Allentoft, M., Sikora, M., Sjögren, KG.et al. Population genomics of Bronze Age Eurasia.Nature522, 167–172 (2015). https://doi.org/10.1038/nature14507
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes
- Swapan Mallick
- Adam Micco
- David Reich
Scientific Data (2024)
Population genomics of post-glacial western Eurasia
- Morten E. Allentoft
- Martin Sikora
- Eske Willerslev
Nature (2024)
aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow
- Zoé Pochon
- Nora Bergfeldt
- Nikolay Oskolkov
Genome Biology (2023)
Genetic history of East-Central Europe in the first millennium CE
- Ireneusz Stolarek
- Michal Zenczak
- Marek Figlerowicz
Genome Biology (2023)
correctKin: an optimized method to infer relatedness up to the 4th degree from low-coverage ancient human genomes
- Emil Nyerki
- Tibor Kalmár
- Zoltán Maróti
Genome Biology (2023)


