- Article
- Published:
3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya
- Sonia Harmand1,2,3,
- Jason E. Lewis1,3,4,
- Craig S. Feibel3,4,5,
- Christopher J. Lepre3,5,6,
- Sandrine Prat3,7,
- Arnaud Lenoble3,8,
- Xavier Boës3,7,
- Rhonda L. Quinn3,5,9,
- Michel Brenet8,10,
- Adrian Arroyo2,
- Nicholas Taylor2,3,
- Sophie Clément3,11,
- Guillaume Daver12,
- Jean-Philip Brugal3,13,
- Louise Leakey1,
- Richard A. Mortlock5,
- James D. Wright5,
- Sammy Lokorodi3,
- Christopher Kirwa3,14,
- Dennis V. Kent5,6 &
- …
- Hélène Roche2,3
Naturevolume 521, pages310–315 (2015)Cite this article
58kAccesses
911Citations
2094Altmetric
Subjects
Abstract
Human evolutionary scholars have long supposed that the earliest stone tools were made by the genusHomo and that this technological development was directly linked to climate change and the spread of savannah grasslands. New fieldwork in West Turkana, Kenya, has identified evidence of much earlier hominin technological behaviour. We report the discovery of Lomekwi 3, a 3.3-million-year-old archaeological site wherein situ stone artefacts occur in spatiotemporal association with Pliocene hominin fossils in a wooded palaeoenvironment. The Lomekwi 3 knappers, with a developing understanding of stone’s fracture properties, combined core reduction with battering activities. Given the implications of the Lomekwi 3 assemblage for models aiming to converge environmental change, hominin evolution and technological origins, we propose for it the name ‘Lomekwian’, which predates the Oldowan by 700,000 years and marks a new beginning to the known archaeological record.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Leakey, L. S. B., Tobias, P. V. & Napier, J. R. A new species of the genusHomo from Olduvai Gorge.Nature202, 7–9 (1964).
Harris, J. W. K. Cultural beginnings: Plio-Pleistocene archaeological occurrences from the Afar Rift, Ethiopia.Afr. Archaeol. Rev.1, 3–31 (1983).
Quinn, R. L. et al. Pedogenic carbonate stable isotopic evidence for wooded habitat preference of early Pleistocene tool makers in the Turkana Basin.J. Hum. Evol.65, 65–78 (2013).
Bobe, R. & Behrensmeyer, A. K. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genusHomo.Palaeogeogr. Palaeoclimatol. Palaeoecol.207, 399–420 (2004).
Roche, H. & Tiercelin, J.-J. Découverte d’une industrie lithique anciennein situ dans la formation d'Hadar, Afar central, Ethiopie.C. R. Acad. Sci. Paris D284, 1871–1874 (1977).
Semaw, S. et al. 2.5-million-year-old stone tools from Gona, Ethiopia.Nature385, 333–336 (1997).
Prat, S. et al. First occurrence of earlyHomo in the Nachukui Formation (West Turkana, Kenya) at 2.3–2.4 Myr.J. Hum. Evol.49, 230–240 (2005).
Kimbel, W. H. et al. Late PlioceneHomo and Oldowan tools from the Hadar formation (Kada Hadar member), Ethiopia.J. Hum. Evol.31, 549–561 (1996).
Antón, S. C., Potts, R. & Aiello, L. C. Evolution of earlyHomo: An integrated biological perspective.Science345, 1236828 (2014).
Panger, M., Brooks, A. S., Richmond, B. G. & Wood, B. Older than the Oldowan? Rethinking the emergence of hominin tool use.Evol. Anthropol.11, 235–245 (2002).
Roche, H., Blumenschine, R. J. & Shea, J. J. inThe First Humans — Origin and Early Evolution of the Genus Homo (eds Grine, F. E., Fleagle, J. G. & Leakey, R. E.) 135–147 (Springer, 2009).
Semaw, S. et al. 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia.J. Hum. Evol.45, 169–177 (2003).
Campisano, C. J. Geological summary of the Busidima Formation (Plio-Pleistocene) at the Hadar paleoanthropological site, Afar Depression, Ethiopia.J. Hum. Evol.62, 338–352 (2012).
de la Torre, I. Omo revisited: evaluating the technological skills of Pliocene hominids.Curr. Anthropol.45, 439–465 (2004).
Roche, H. et al. Early hominid stone tool production and technical skill 2.34 Myr ago in West Turkana, Kenya.Nature399, 57–60 (1999).
Delagnes, A. & Roche, H. Late Pliocene hominid knapping skills: the case of Lokalalei 2C, West Turkana, Kenya.J. Hum. Evol.48, 435–472 (2005).
Stout, D., Semaw, S., Rogers, M. J. & Cauche, D. Technological variation in the earliest Oldowan from Gona, Afar, Ethiopia.J. Hum. Evol.58, 474–491 (2010).
Harmand, S. inInterdisciplinary Approaches to the Oldowan (eds Hovers, E. & Braun, D. R) 85–97 (Springer, 2009).
Goldman-Neuman, T. & Hovers, E. Raw material selectivity in Late Pliocene Oldowan sites in the Makaamitalu Basin, Hadar, Ethiopia.J. Hum. Evol.62, 353–366 (2012).
McPherron, S. P. et al. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia.Nature466, 857–860 (2010).
Mora, R. & de la Torre, I. Percussion tools in Olduvai Beds I and II (Tanzania): implications for early human activities.J. Anthropol. Archaeol.24, 179–192 (2005).
Diez-Martín, F., Sánchez Yustos, P., Domínguez-Rodrigo, M., Mabulla, A. Z. P. & Barba, R. Were Olduvai hominins making butchering or battering tools? Analysis of a recently excavated lithic assemblage from BK (Bed II, Olduvai Gorge, Tanzania).J. Anthropol. Archaeol.28, 274–289 (2009).
Blumenschine, R. J. & Selvaggio, M. M. Percussion marks on bone surfaces as a new diagnostic of hominid behaviour.Nature333, 763–765 (1988).
Marchant, L. & McGrew, W. inStone Knapping: the Necessary Conditions for a Uniquely Hominin Behavior (eds Roux, V. & Brill, B.) 341–350 (Cambridge McDonald Institute, 2005).
Carvalho, S., Cunha, E., Sousa, C. & Matsuzawa, T.Chaînes opératoires and resource-exploitation strategies in chimpanzee (Pan troglodytes) nut cracking.J. Hum. Evol.55, 148–163 (2008).
Harris, J. M., Brown, F. H. & Leakey, M. G. Stratigraphy and paleontology of Pliocene and Pleistocene localities west of Lake Turkana, Kenya.Contr. Sci. Nat. Mus. Los Angeles399, 1–128 (1988).
Leakey, M. G. et al. New hominin genus from eastern Africa shows diverse middle Pliocene lineages.Nature410, 433–440 (2001).
Wood, B. & Leakey, M. G. The Omo-Turkana Basin fossil hominins and their contribution to our understanding of human evolution in Africa.Evol. Anthropol.20, 264–292 (2011).
McDougall, I. & Brown, F. H. Geochronology of the pre-KBS Tuff sequence, Turkana Basin.J. Geol. Soc. Lond.165, 549–562 (2008).
McDougall, I. et al. New single crystal40Ar/39Ar ages improve time scale for deposition of the Omo Group, Omo-Turkana Basin, East Africa.J. Geol. Soc. Lond.169, 213–226 (2012).
Lourens, L. J., Hilgen, F. J., Laskar, J., Shackleton, N. J. & Wilson, D.The Neogene Period. A Geological Time Scale 2004 (eds Gradstein, F. M., Ogg, J. G. & Smith, A. G.) 409–440 (Cambridge University Press, 2004).
Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years.Nature476, 51–56 (2011).
Quade, J. et al. Paleoenvironments of the earliest stone toolmakers, Gona, Ethiopia.Geol. Soc. Am. Bull.116, 1529–1544 (2004).
Crabtree, D. E. An introduction to flintworking. Part 1. An introduction to the technology of stone tools.Occasional Papers of the Idaho State University Museum28, (Idaho State Univ. Museum, 1972).
Mourre, V., Jarry, M., Colonge, D. & Lelouvier, L.-A. Le débitage sur enclume aux Bosses (Lamagdalaine, Lot, France).Paleo (special issue). 49–62 (2010).
Diez-Martin, F. et al. New insights into hominin lithic activities at FLK North Bed I, Olduvai Gorge, Tanzania.Quat. Res.74, 376–387 (2010).
de la Torre, I. & Mora, R. A technological analysis of non-flaked stone tools in Olduvai Beds I & II. Stressing the relevance of percussion activities in the African Lower Pleistocene.Paleo (special issue). 13–34 (2010).
Alimen, M. H. Enclumes (percuteurs dormants) associées à l'Acheuléen supérieur de l'Ougartien (Oued Farès, Sahara occidental).Bull. Soc. Préhist. Fr.60, 43–47 (1963).
Leakey, M. D.Olduvai Gorge, Vol. 3. Excavations in Beds I and II 1960–1963 (Cambridge Univ. Press, 1971).
Mercader, J. et al. 4,300-year-old chimpanzee sites and the origins of percussive stone technology.Proc. Natl Acad. Sci. USA104, 3043–3048 (2007).
Sakura, O. & Matsuzawa, T. Flexibility of wild chimpanzee nut-cracking behavior using stone hammers and anvils: an experimental analysis.Ethology87, 237–248 (1991).
Haslam, M. et al. Primate archaeology.Nature460, 339–344 (2009).
Visalberghi, E., Haslam, M., Spagnoletti, N. & Fragaszy, D. Use of stone hammer tools and anvils by bearded capuchin monkeys over time and space: construction of an archeological record of tool use.J. Archaeol. Sci.40, 3222–3232 (2013).
Matsuzawa, T. inGreat Ape Societies (eds McGrew, W. et al.) 196–209 (Cambridge Univ. Press, 1996).
Leakey, L. S. B. inEssays Presented to C. G. Seligman (eds Evans-Pritchard, E. E., Firth, R. Malinowski, B. & Schapera, I.) 143–146 (K. Paul, Trench, Trubner & Co, 1934).
de la Torre, I. The origins of stone tool technology in Africa: a historical perspective.Phil. Trans. R. Soc. B.366, 1028–1037 (2011).
Shea, J. Lithic modes A-I: a new framework for describing global-scale variation in stone tool technology illustrated with evidence from the East Mediterranean Levant.J. Archaeol. Method Theory20, 151–186 (2013).
Hovers, E. inOrigins of Human Innovation and Creativity (ed. Elias, S.) 51–68 (Elsevier, 2012).
Toth, N., Schick, K. & Semaw, S. inThe Oldowan: Case Studies into the Earliest Stone Age (eds Toth, N. & Schick, K. D.) 155–222 (Stone Age Institute Press, 2006).
Piperno, M. inHominidae: Proc. 2nd Intl Congr. Human Paleontol. 1987 189–195 (Jaca Books, 1989).
Kirschvink, J. L. The least-squares line and plane and the analysis of palaeomagnetic data.Geophys. J. Int.62, 699–718 (1980).
White, F. The vegetation of Africa, a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. UNESCO.Nat. Resour. Res.20, 1–356 (1983).
Fox, D. L. & Koch, P. L. Carbon and oxygen isotopic variability in Neogene paleosol carbonates: constraints on the evolution of the C4-grasslands of the Great Plains, USA.Palaeogeogr. Palaeoclimatol. Palaeoecol.207, 305–329 (2004).
Levin, N. E., Quade, J., Simpson, S. W., Semaw, S. & Rogers, M. J. Isotopic evidence for Plio-Pleistocene environmental change at Gona, Ethiopia.Earth Planet. Sci. Lett.219, 93–110 (2004).
Levin, N. E. Compilation of East Africa soil carbonate stable isotope data.Integrated Earth Data Applicationshttp://dx.doi.org/10.1594/IEDA/100231 (2013).
Cerling, T. E., Bowman, J. R. & O’Neil, J. R. An isotopic study of a fluvial-lacustrine sequence: the Plio-Pleistocene Koobi Fora sequence, East Africa.Palaeogeogr. Palaeoclimatol. Palaeoecol.63, 335–356 (1988).
Levin, N. E., Brown, F. H., Behrensmeyer, A. K., Bobe, R. & Cerling, T. E. Paleosol carbonates from the Omo Group: isotopic records of local and regional environmental change in East Africa.Palaeogeogr. Palaeoclimatol. Palaeoecol.307 75–89 (2011)CrossRef.
Wynn, J. G. Influence of Plio-Pleistocene aridification on human evolution: evidence from paleosols from the Turkana Basin, Kenya.Am. J. Phys. Anthropol.123, 106–118 (2004).
Kingston, J. D.Stable isotopic evidence for hominid paleoenvironments in East Africa. Ph.D. Thesis, Harvard Univ. (1992).
Aronson, J. L., Hailemichael, M. & Savin, S. M. Hominid environments at Hadar from paleosol studies in a framework of Ethiopian climate change.J. Hum. Evol.55, 532–550 (2008).
Wynn, J. G. et al. Geological and palaeontological context of a Pliocene juvenile hominin at Dikika, Ethiopia.Nature443, 332–336 (2006).
Semaw, S., Rogers, M. J. & Stout, D. InThe Cutting Edge: New Approaches to the Archaeology of Human Origins (eds Schick, K. D. & Toth, N.) 211–246 (Stone Age Institute Press, 2009).
Hovers, E. InThe Cutting Edge: New Approaches to the Archaeology of Human Origins (eds Schick, K. D. & Toth, N.) 137–150 (Stone Age Institute Press, 2009).
de la Torre, I. & Mora, R.Technological Strategies in the Lower Pleistocene at Olduvai Beds I & II. ERAUL 112. (2005).
Acknowledgements
We thank the office of the President of Kenya, the Ministry of Education, Science and Technology, the National Council for Science and Technology (NCST/RCD/12B/012/25) and the National Museums of Kenya for permission to conduct research. Funding was provided by the French Ministry of Foreign Affairs (N°681/DGM/ATT/RECH, N°986/DGM/DPR/PRG), the French National Research Agency (ANR-12-CULT-0006), theFondation Fyssen, the National Geographic Society (Expeditions Council #EC0569-12), the Rutgers University Research Council and Center for Human Evolutionary Studies, and INTM Indigo Group France. We thank the Turkana Basin Institute and Total Kenya Limited for logistical support and the GeoEye Foundation for satellite imagery; the Turkana communities from Nariokotome, Kokiselei and Katiko for field assistance, and the 2011-12 WTAP team, S. Kahinju, P. Egolan, L. P. Martin, D. Massika, B. K. Mulwa S. M. Musyoka, A. Mutisiya, J. Mwambua, F. M. Wambua, M. Terrade, A. Weiss, R. Benitez, S. Feibel. M. Leakey and F. Spoor supplied information on hominin fossils, and I. de la Torre and E. Hovers provided lithic assemblage data. We are very grateful to A. Brooks, I. de la Torre, J. Shea, R. Klein and M. Leakey for comments on earlier drafts. We also thank the Zoller & Fröhlich GmbH company, Ch. Fröhlich and M. Reinköster, Autodesk and Faro (T. O’Mahoney, K. Almeida Warren and T. Gichunge) for technical support with scanning and J. P. Chirey for photographic assistance.
Author information
Authors and Affiliations
Turkana Basin Institute, Stony Brook University, Stony Brook, 11794-4364, New York, USA
Sonia Harmand, Jason E. Lewis & Louise Leakey
CNRS, UMR 7055, Préhistoire et Technologie, Université Paris Ouest Nanterre La Défense, 21 allée de l’Université, Nanterre Cedex, 92023, France
Sonia Harmand, Adrian Arroyo, Nicholas Taylor & Hélène Roche
West Turkana Archaeological Project, P.O. Box 40658-00100, Ngara Rd, Nairobi, Kenya
Sonia Harmand, Jason E. Lewis, Craig S. Feibel, Christopher J. Lepre, Sandrine Prat, Arnaud Lenoble, Xavier Boës, Rhonda L. Quinn, Nicholas Taylor, Sophie Clément, Jean-Philip Brugal, Sammy Lokorodi, Christopher Kirwa & Hélène Roche
Department of Anthropology and Center for Human Evolutionary Studies, Rutgers University, New Brunswick, 08901, New Jersey, USA
Jason E. Lewis & Craig S. Feibel
Department of Earth and Planetary Sciences, Rutgers University, Piscataway, 08854, New Jersey, USA
Craig S. Feibel, Christopher J. Lepre, Rhonda L. Quinn, Richard A. Mortlock, James D. Wright & Dennis V. Kent
Lamont-Doherty Earth Observatory of Columbia University, Palisades, 10964, New York, USA
Christopher J. Lepre & Dennis V. Kent
CNRS, UPR 2147, Dynamique de l’Evolution Humaine, 44 rue de l’Amiral Mouchez, Paris, 75014, France
Sandrine Prat & Xavier Boës
CNRS, UMR 5199 PACEA, Université de Bordeaux, Pessac, 33615, France
Arnaud Lenoble & Michel Brenet
Department of Sociology, Anthropology and Social Work, Seton Hall University, South Orange, 07079, New Jersey, USA
Rhonda L. Quinn
Inrap, Centre Mixte de Recherche Archéologique, Domaine de Campagne, Campagne, 24620, France
Michel Brenet
Inrap, 34-36 avenue Paul-Vaillant Couturier, La Courneuve, 93120, France
Sophie Clément
IPHEP, Institut de Paléoprimatologie, Paléontologie Humaine: Évolution et Paléoenvironnements, CNRS, UMR 7262, Université de Poitiers, Bât. B35 – TSA 51106, 6 rue Michel Brunet, Poitiers Cedex 9, 86073, France
Guillaume Daver
Aix-Marseille Université, CNRS, MCC, UMR 7269, LAMPEA, Aix-en-Provence Cedex 2, 13094, France
Jean-Philip Brugal
Department of Earth Sciences, National Museums of Kenya, Archaeology Section, P.O. Box 40658-00100 Ngara Rd, Nairobi, Kenya
Christopher Kirwa
- Sonia Harmand
Search author on:PubMed Google Scholar
- Jason E. Lewis
Search author on:PubMed Google Scholar
- Craig S. Feibel
Search author on:PubMed Google Scholar
- Christopher J. Lepre
Search author on:PubMed Google Scholar
- Sandrine Prat
Search author on:PubMed Google Scholar
- Arnaud Lenoble
Search author on:PubMed Google Scholar
- Xavier Boës
Search author on:PubMed Google Scholar
- Rhonda L. Quinn
Search author on:PubMed Google Scholar
- Michel Brenet
Search author on:PubMed Google Scholar
- Adrian Arroyo
Search author on:PubMed Google Scholar
- Nicholas Taylor
Search author on:PubMed Google Scholar
- Sophie Clément
Search author on:PubMed Google Scholar
- Guillaume Daver
Search author on:PubMed Google Scholar
- Jean-Philip Brugal
Search author on:PubMed Google Scholar
- Louise Leakey
Search author on:PubMed Google Scholar
- Richard A. Mortlock
Search author on:PubMed Google Scholar
- James D. Wright
Search author on:PubMed Google Scholar
- Sammy Lokorodi
Search author on:PubMed Google Scholar
- Christopher Kirwa
Search author on:PubMed Google Scholar
- Dennis V. Kent
Search author on:PubMed Google Scholar
- Hélène Roche
Search author on:PubMed Google Scholar
Contributions
S.H. and J.E.L. directed field research and co-wrote the overall paper. C.S.F., C.J.L., A.L. and X.B. recorded sedimentological and stratigraphic data, conducted geological mapping, and wrote sections of the paper. C.S.F. interpreted tephra data. C.J.L. interpreted paleomagnetic data. S.P., J.-Ph.B., S.L., C.K. and L.L. conducted paleontological survey. S.P., J.-Ph.B. and L.L. analysed and interpreted fossil material. L.L. directed scanning of artefacts. S.P. laser scanned artefacts and excavation surfaces, and wrote sections of the paper. R.L.Q. interpreted isotopic data and wrote sections of the paper. C.S.F., C.J.L., R.L.Q., R.A.M., J.D.W. and D.V.K. analysed geological samples. G.D. developed protocols for tool replication experiments and wrote sections of the paper. S.H., H.R., N.T., M.B., S.C., S.L. and C.K. conducted archaeological survey and excavation. S.H., H.R., A.A., N.T. and M.B. analysed and interpreted lithic material and wrote sections of the paper. M.B. performed lithic replication experiments. S.C. provided spatial data. S.L. discovered the LOM3 site.
Corresponding authors
Correspondence toSonia Harmand orJason E. Lewis.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 Map and schematic section at LOM3.
a, Map showingxy coordinates of artefacts and fossils recoveredin situ and from the surface at the site in 2011 and 2012.b, Schematic section showing vertical distribution ofin situ artefacts and those located in the slope deposit at the excavation. Key is the same for both figures.
Extended Data Figure 2 Geology of the LOM3 site.
a, Stratigraphic sections around LOM3 (locations inb), showing relationship of site to marker tuffs and lithofacies. Sections aligned relative to top of flat-pebble conglomerate unit.b, GPS coordinates of stratigraphic sections (WGS84 datum).
Extended Data Figure 3 Paleomagnetic data.
a, Representative vector end-point plots of natural remanent magnetism thermal demagnetization data from specimen Toroto Tuff, tt2, wt59, wt50, wt45, wt36. Open and closed symbols represent the vertical and horizontal projections, respectively, in bedding coordinates. TD treatment steps: NRM, 100°, 150°, 200°, 250°, 300°, 350°, 400°, 450°, 475°, 500°, 525°, 550°, 575°, 600°, 625°, 650°, 660°, 670°, 675°, 680°, 690°, and 700°. V/M = 10 denotes a∼10 cc cubic specimen.b, Equal-area projections for Section 1 (left) and Section 2 (right) of the lower Lomekwi Member (seeFig. 3a). Open and closed symbols are projected onto the upper and lower hemisphere, respectively, in bedding coordinates. Plotted are ChRM sample-mean directions for accepted samples only (that is, those with MAD values <15°). Overall mean directions were calculated after inverting the northerly (normal) directions to common southerly (reverse) polarity.
Extended Data Figure 4 Paleoenvironmental reconstruction through pedogenic carbonate stable carbon isotopic analysis.
a, LOM3 paleosol δ13CVPDB values (‰) ± 1σ, number of analyses, fraction woody canopy cover (ƒwc) and percent C4 biomass contribution to soil CO2. Asterisk denotes nodules sampled at the LOM3 site, 2011-2b (seeExtended Data Fig. 2a).b, Schematic box and whisker plots of ƒwc from the LOM3 (3.3 Ma, this study) and Gona33,54,55 (Busidima Fm, 2.5–2.7 Ma) lithic sites and other East African hominin localities from 3.2–3.4 Ma34,55,56,57,58,59,60,61 relative to UNESCO structural categories of African vegetation32,52. Grey box denotes 25th and 75th percentiles (interquartile range); whiskers represent observations within upper and lower fences (1.5 × interquartile range); black line shows mean value; grey line equals median value; black circles indicate mild outliers.c, Summary statistics of paleosol δ13CVPDB values and ƒwc from LOM3 (3.3 Ma) and Gona33,54,55 (2.5–2.7 Ma) lithic sites and other East African hominin localities from 3.2–3.4 Ma54,55,56,57,58,59,60,61. LOM3 δ13CVPDB values are significantly lower than those from the Busidima Formation at Gona (t-test,P < 0.001) and have a mean value that indicate 18% more woody canopy cover. When compared to paleosol δ13CVPDB values of the Koobi Fora, Nachukui, Chemeron, and Hadar formations from 3.2 to 3.4 Ma, LOM3 δ13CVPDB values are not significantly different (one-way ANOVA,P > 0.05).
Extended Data Figure 5 Gradual uncovering of core I16-3 fromin situ pliocene sediment.
a, Photograph showing square I16 at the beginning of excavation. Yellow line indicates north wall of square (July 16, 2011, 12.14 p.m.).b, Close-up of square I16 indicating complete burial of as-yet-uncovered artefact I16-3 (12.14 p.m.).c, Square I16 after excavation had begun and artefact I16-3 was initially exposed (2:11 p.m.).d, Close-up of artefact I16-3 after being initially exposed (2.12 p.m.).e, Close-up of artefact I16-3 after further excavation (3.02 p.m.).f, Square I16 after further excavation (5.32 p.m.).g, Close-up of artefact I16-3 after further excavation (5.34 p.m.).h, Close-up of artefact I16-3 after being completely freed from the surrounding matrix and flipped over for inspection (5.36 p.m.).i, Close-up of impression from under artefact I16-3 (5.47 p.m.).
Extended Data Figure 6 Photos of selected LOM3 artefacts compared with similar experimental cores.
Together with the technological analysis of the archaeological material, our replication experiments suggest that the LOM3 knappers were using passive hammer technique, in which the core, usually held in both hands, is struck against a stationary object that serves as the percussor34 (also referred to as on-anvil, block on block orsur percuteur dormant35) and/or bipolar technique, in which the core is placed on an anvil and struck with a hammerstone34.a, Unifacial passive hammer cores. Left is archaeological piece LOM3-2012 surf 106 (2.04 kg); right is experimental piece Expe 55 (3.40 kg) produced using the passive hammer technique. Selection of relatively flat blocks with natural obtuse angles. The flake removal process starts from a slighly prominent part of the block (white arrows show the direction of removals). The removals tend to be invasive. The flaked surface forms a semi-abrupt angle with the platform surface. A slight rotation of the block ensures its semi-peripheral exploitation.b, Unifacial bipolar cores. Left are archaeological pieces LOM3-2012-H18-1 (left, 3.45 kg) and LOM3-2012 surf 64 (right, 2.58 kg); right are experimental pieces Expe 39 (left, 4.20 kg) and Expe 24 (right, 2.23 kg) produced using the bipolar technique. The block selected are thicker and more quadrangular in shape with natural angles ≈90°. Flakes are removed from a single secant platform (white arrows show the direction of removals). The flaked surface forms an abrupt angle with the other faces of the block. Impacts due to the contrecoups (white dots) are visible on the opposite edge from the platform.
Extended Data Figure 7 Photographs of selected LOM3 artefacts.
a, Passive element/anvil (LOM3-2012 surf 50,15 kg). Heavy sub-rectangular block displaying flat faces and therefore a natural morphology and weight which would enable stability.b, Hammerstone showing isolated impact points (LOM3-2012 surf 33, 3.09 kg) andc, Hammerstone showing isolated impact points (LOM3-2012 surf 54, 1.63 kg), associated with a flake-like fracture on one end.
Supplementary information
Supplementary Information
This file contains Supplementary Text, Supplementary Tables 1-3 and Supplementary References. (PDF 615 kb)
Rights and permissions
About this article
Cite this article
Harmand, S., Lewis, J., Feibel, C.et al. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya.Nature521, 310–315 (2015). https://doi.org/10.1038/nature14464
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Diversity-dependent speciation and extinction in hominins
- Laura A. van Holstein
- Robert A. Foley
Nature Ecology & Evolution (2024)
New Approaches to the Bipolar Flaking Technique: Qualitative, Quantitative, and Kinematic Perspectives
- Görkem Cenk Yeşilova
- Adrián Arroyo
- Andreu Ollé
Journal of Archaeological Method and Theory (2024)
From fossils to mind
- Alexandra A. de Sousa
- Amélie Beaudet
- Yongbin Wei
Communications Biology (2023)
Hafted technologies likely reduced stone tool-related selective pressures acting on the hominin hand
- Anna Mika
- Julie Lierenz
- Alastair Key
Scientific Reports (2023)
Reappraising the palaeobiology of Australopithecus
- Zeresenay Alemseged
Nature (2023)


