Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Massive migration from the steppe was a source for Indo-European languages in Europe

Naturevolume 522pages207–211 (2015)Cite this article

Subjects

Abstract

We generated genome-wide data from 69 Europeans who lived between 8,000–3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies1,2,3,4,5,6,7,8 and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000–5,000 years ago. At the beginning of the Neolithic period in Europe,8,000–7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a24,000-year-old Siberian6. By6,000–5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin9 of at least some of the Indo-European languages of Europe.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location and SNP coverage of samples included in this study.
Figure 2: Population transformations in Europe.
Figure 3: Admixture proportions.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

Data deposits

The aligned sequences are available through the European Nucleotide Archive under accession numberPRJEB8448. The Human Origins genotype dataset including ancient individuals can be found at (http://genetics.med.harvard.edu/reichlab/Reich_Lab/Datasets.html).

References

  1. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia.Nature514, 445–449 (2014)

    ADS CAS PubMed PubMed Central  Google Scholar 

  2. Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory.Nature Commun.5, 5257 (2014)

    ADS CAS  Google Scholar 

  3. Keller, A. et al. New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing.Nature Commun.3, 698 (2012)

    ADS  Google Scholar 

  4. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans.Nature513, 409–413 (2014)

    ADS CAS PubMed PubMed Central  Google Scholar 

  5. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.Nature507, 225–228 (2014)

    ADS CAS PubMed PubMed Central  Google Scholar 

  6. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans.Nature505, 87–91 (2014)

    ADS PubMed  Google Scholar 

  7. Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years.Science346, 1113–1118 (2014)

    ADS CAS PubMed  Google Scholar 

  8. Skoglund, P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.Science344, 747–750 (2014)

    ADS CAS PubMed  Google Scholar 

  9. Anthony, D. W.The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World (Princeton Univ. Press, 2007)

    Google Scholar 

  10. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China.Proc. Natl Acad. Sci. USA110, 2223–2227 (2013)

    ADS CAS PubMed PubMed Central  Google Scholar 

  11. Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA.Phil. Trans. R. Soc. Lond. B370, 20130624 (2015)

    Google Scholar 

  12. Patterson, N. et al. Ancient admixture in human history.Genetics192, 1065–1093 (2012)

    PubMed PubMed Central  Google Scholar 

  13. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes.Curr. Biol.23, 553–559 (2013)

    CAS PubMed PubMed Central  Google Scholar 

  14. Brandt, G. et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity.Science342, 257–261 (2013)

    ADS CAS PubMed PubMed Central  Google Scholar 

  15. Der Sarkissian, C. et al. Ancient DNA reveals prehistoric gene-flow from Siberia in the complex human population history of North East Europe.PLoS Genet.9, e1003296 (2013)

    CAS PubMed PubMed Central  Google Scholar 

  16. Briggs, A. W. et al. Removal of deaminated cytosines and detection ofin vivo methylation in ancient DNA.Nucleic Acids Res.38, e87 (2010)

    Article PubMed  Google Scholar 

  17. Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal.Proc. Natl Acad. Sci. USA104, 14616–14621 (2007)

    ADS CAS PubMed PubMed Central  Google Scholar 

  18. Myres, N. M. et al. A major Y-chromosome haplogroup R1b Holocene era founder effect in Central and Western Europe.Eur. J. Hum. Genet.19, 95–101 (2011)

    PubMed  Google Scholar 

  19. Underhill, P. A. et al. The phylogenetic and geographic structure of Y-chromosome haplogroup R1a.Eur. J. Hum. Genet.23, 124–131 (2015)

    PubMed  Google Scholar 

  20. Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.Science336, 466–469 (2012)

    ADS CAS PubMed  Google Scholar 

  21. Czebreszuk, J. inAncient Europe, 8000 B.C. to A.D. 1000: Encyclopedia of the Barbarian World (eds Bogucki, P. I. & Crabtree, P. J. ) 467–475 (Charles Scribners & Sons, 2003)

    Google Scholar 

  22. Lipson, M. et al. Efficient moment-based inference of admixture parameters and sources of gene flow.Mol. Biol. Evol.30, 1788–1802 (2013)

    CAS PubMed PubMed Central  Google Scholar 

  23. Szécsényi-Nagy, A. et al. Tracing the genetic origin of Europe’s first farmers reveals insights into their social organization. Preprint atbioRxivhttp://dx.doi.org/10.1101/008664 (2014)

  24. Haak, W. et al. Ancient DNA from European early Neolithic farmers reveals their Near Eastern affinities.PLoS Biol.8, e1000536 (2010)

    PubMed PubMed Central  Google Scholar 

  25. Hellenthal, G. et al. A genetic atlas of human admixture history.Science343, 747–751 (2014)

    ADS CAS PubMed PubMed Central  Google Scholar 

  26. Ralph, P. & Coop, G. The geography of recent genetic ancestry across Europe.PLoS Biol.11, e1001555 (2013)

    CAS PubMed PubMed Central  Google Scholar 

  27. Renfrew, C.Archaeology and Language: The Puzzle of Indo-European Origins (Pimlico, 1987)

    Google Scholar 

  28. Bellwood, P.First Farmers: The Origins of Agricultural Societies (Wiley-Blackwell, 2004)

    Google Scholar 

  29. Gamkrelidze, T. V. & Ivanov, V. V. The early history of Indo-European languages.Sci. Am.262, 110–116 (1990)

    Google Scholar 

  30. Mallory, J. P.In Search of the Indo-Europeans: Language, Archaeology and Myth (Thames and Hudson, 1991)

    Google Scholar 

  31. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform.Nucleic Acids Res.40, e3 (2012)

    CAS PubMed  Google Scholar 

  32. Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos.Nature505, 403–406 (2014)

    ADS CAS PubMed  Google Scholar 

  33. Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA.Phil. Trans. R. Soc. Lond. B370, 20130624 (2015)

    Google Scholar 

  34. Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture.Genome Res.22, 939–946 (2012)

    CAS PubMed PubMed Central  Google Scholar 

  35. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform.Bioinformatics25, 1754–1760 (2009)

    CAS PubMed PubMed Central  Google Scholar 

  36. Behar, D. M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root.Am. J. Hum. Genet.90, 675–684 (2012)

    CAS PubMed PubMed Central  Google Scholar 

  37. Lassmann, T. & Sonnhammer, E. L. L. Kalign—an accurate and fast multiple sequence alignment algorithm.BMC Bioinformatics6, 298 (2005)

    PubMed PubMed Central  Google Scholar 

  38. Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA.PLoS ONE7, e34131 (2012)

    ADS CAS PubMed PubMed Central  Google Scholar 

  39. Green, R. E. et al. A draft sequence of the Neandertal genome.Science328, 710–722 (2010)

    ADS CAS PubMed PubMed Central  Google Scholar 

  40. Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation.BMC Bioinformatics12, 246 (2011)

    PubMed PubMed Central  Google Scholar 

  41. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals.Genome Res.19, 1655–1664 (2009)

    CAS PubMed PubMed Central  Google Scholar 

  42. Reich, D., Price, A. L. & Patterson, N. Principal component analysis of genetic data.Nature Genet.40, 491–492 (2008)

    CAS PubMed  Google Scholar 

  43. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses.Am. J. Hum. Genet.81, 559–575 (2007)

    CAS PubMed PubMed Central  Google Scholar 

  44. Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of ancient human remains using DNA shotgun sequencing.J. Archaeol. Sci.40, 4477–4482 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Bellwood, J. Burger, P. Heggarty, M. Lipson, C. Renfrew, J. Diamond, S.Pääbo, R. Pinhasi and P. Skoglund for critical comments, and the Initiative for the Science of the Human Past at Harvard for organizing a workshop around the issues touched on by this paper. We thank S. Pääbo for support for establishing the ancient DNA facilities in Boston, and P. Skoglund for detecting the presence of two related individuals in our data set. We thank L. Orlando, T. S. Korneliussen, and C. Gamba for help in obtaining data. We thank Agilent Technologies and G. Frommer for help in developing the capture reagents. We thank C. Der Sarkissian, G. Valverde, L. Papac and B. Nickel for wet laboratory support. We thank archaeologists V. Dresely, R. Ganslmeier, O. Balanvosky, J. Ignacio Royo Guillén, A. Osztás, V. Majerik, T. Paluch, K. Somogyi and V.Voicsek for sharing samples and discussion about archaeological context. This research was supported by an Australian Research Council grant to W.H. and B.L. (DP130102158), and German Research Foundation grants to K.W.A. (Al 287/7-1 and 7-3, Al 287/10-1 and Al 287/14-1) and to H.M. (Me 3245/1-1 and 1-3). D.R. was supported by US National Science Foundation HOMINID grant BCS-1032255, US National Institutes of Health grant GM100233, and the Howard Hughes Medical Institute.

Author information

Author notes
  1. Wolfgang Haak and Iosif Lazaridis: These authors contributed equally to this work.

Authors and Affiliations

  1. Australian Centre for Ancient DNA, School of Earth and Environmental Sciences & Environment Institute, University of Adelaide, Adelaide, 5005, South Australia, Australia

    Wolfgang Haak, Bastien Llamas & Alan Cooper

  2. Department of Genetics, Harvard Medical School, Boston, 02115, Massachusetts, USA

    Iosif Lazaridis, Nadin Rohland, Swapan Mallick, Susanne Nordenfelt, Eadaoin Harney, Kristin Stewardson, Qiaomei Fu & David Reich

  3. Broad Institute of Harvard and MIT, Cambridge, 02142, Massachusetts, USA

    Iosif Lazaridis, Nick Patterson, Nadin Rohland, Swapan Mallick, Susanne Nordenfelt, Eadaoin Harney, Kristin Stewardson, Qiaomei Fu & David Reich

  4. Howard Hughes Medical Institute, Harvard Medical School, Boston, 02115, Massachusetts, USA

    Swapan Mallick, Eadaoin Harney, Kristin Stewardson & David Reich

  5. Institute of Anthropology, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany,

    Guido Brandt, Nicole Nicklisch, Christina Roth, Anna Szécsényi-Nagy & Kurt Werner Alt

  6. Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany,

    Qiaomei Fu & Matthias Meyer

  7. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100049, China,

    Qiaomei Fu

  8. Institute for Archaeological Sciences, University of Tübingen, D-72070 Tübingen, Germany,

    Alissa Mittnik & Johannes Krause

  9. Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Science, H-1014 Budapest, Hungary,

    Eszter Bánffy & Anna Szécsényi-Nagy

  10. Römisch Germanische Kommission (RGK) Frankfurt, D-60325 Frankfurt, Germany,

    Eszter Bánffy

  11. Archaeological Research Laboratory, Stockholm University, 114 18 Stockholm, Sweden,

    Christos Economou

  12. Departments of Paleoanthropology and Archaeogenetics, Senckenberg Center for Human Evolution and Paleoenvironment, University of Tübingen, D-72070 Tübingen, Germany,

    Michael Francken & Johannes Krause

  13. State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany,

    Susanne Friederich, Harald Meller, Nicole Nicklisch & Kurt Werner Alt

  14. Departamento de Prehistoria y Arqueología, Facultad de Filosofía y Letras, Universidad Autónoma de Madrid, E-28049 Madrid, Spain,

    Rafael Garrido Pena

  15. The Cultural Heritage Foundation, Västerås 722 12, Sweden,

    Fredrik Hallgren

  16. Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, St Petersburg 199034, Russia,

    Valery Khartanovich & Vayacheslav Moiseyev

  17. Volga State Academy of Social Sciences and Humanities, Samara 443099, Russia,

    Aleksandr Khokhlov, Pavel Kuznetsov & Oleg Mochalov

  18. Abteilung Madrid, Deutsches Archaeologisches Institut, E-28002 Madrid, Spain,

    Michael Kunst

  19. Danube Private University, A-3500 Krems, Austria,

    Nicole Nicklisch & Kurt Werner Alt

  20. Institute for Prehistory and Archaeological Science, University of Basel, CH-4003 Basel, Switzerland,

    Sandra L. Pichler & Kurt Werner Alt

  21. Departamento de Prehistòria, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain,

    Roberto Risch

  22. Departamento de Prehistòria y Arqueolgia, Universidad de Valladolid, E-47002 Valladolid, Spain,

    Manuel A. Rojo Guerra

  23. State Office for Cultural Heritage Management Baden-Württemberg, Osteology, D-78467 Konstanz, Germany,

    Joachim Wahl

  24. Max Planck Institute for the Science of Human History, D-07745 Jena, Germany,

    Johannes Krause

  25. Anthropology Department, Hartwick College, Oneonta, 13820, New York, USA

    Dorcas Brown & David Anthony

Authors
  1. Wolfgang Haak
  2. Iosif Lazaridis
  3. Nick Patterson
  4. Nadin Rohland
  5. Swapan Mallick
  6. Bastien Llamas
  7. Guido Brandt
  8. Susanne Nordenfelt
  9. Eadaoin Harney
  10. Kristin Stewardson
  11. Qiaomei Fu
  12. Alissa Mittnik
  13. Eszter Bánffy
  14. Christos Economou
  15. Michael Francken
  16. Susanne Friederich
  17. Rafael Garrido Pena
  18. Fredrik Hallgren
  19. Valery Khartanovich
  20. Aleksandr Khokhlov
  21. Michael Kunst
  22. Pavel Kuznetsov
  23. Harald Meller
  24. Oleg Mochalov
  25. Vayacheslav Moiseyev
  26. Nicole Nicklisch
  27. Sandra L. Pichler
  28. Roberto Risch
  29. Manuel A. Rojo Guerra
  30. Christina Roth
  31. Anna Szécsényi-Nagy
  32. Joachim Wahl
  33. Matthias Meyer
  34. Johannes Krause
  35. Dorcas Brown
  36. David Anthony
  37. Alan Cooper
  38. Kurt Werner Alt
  39. David Reich

Contributions

W.H., N.P., N.R., J.K., K.W.A. and D.R. supervised the study. W.H., E.B., C.E., M.F., S.F., R.G.P., F.H., V.K., A.K., M.K., P.K., H.M., O.M., V.M., N.N., S.L.P., R.R., M.A.R.G., C.R., A.S.-N., J.W., J.K., D.B., D.A., A.C., K.W.A. and D.R. assembled archaeological material, W.H., I.L., N.P., N.R., S.M., A.M. and D.R. analysed genetic data. I.L., N.P. and D.R. developed methods usingf statistics for inferring admixture proportions. W.H., N.R., B.L., G.B., S.N., E.H., K.S. and A.M. performed wet laboratory ancient DNA work. I.L., N.R., S.M., B.L., Q.F., M.M. and D.R. developed the 390k capture reagent. W.H., I.L. and D.R. wrote the manuscript with help from all co-authors.

Corresponding author

Correspondence toDavid Reich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 2 Modelling Corded Ware as a mixture ofN = 1, 2, or 3 ancestral populations.

a, The left column shows a histogram of rawf4 statistic residuals and on the rightZ-scores for the best-fitting (lowest squared 2-norm of the residuals, orresnorm) model at eachN.b, The data on the left showresnorm and on the right show the maximum |Z| score change for differentN.c,resnorm of differentN = 2 models. The set of outgroups used in this analysis in the terminology ofSupplementary Information section 9 is ‘World Foci 15 + Ancients’.

Extended Data Figure 4 Geographic distribution of archaeological cultures and graphic illustration of proposed population movements / turnovers discussed in the main text.

a, Proposed routes of migration by early farmers into Europe9,000−7000 years ago.b, Resurgence of hunter-gatherer ancestry during the Middle Neolithic 7,000−5,000 years ago.c, Arrival of steppe ancestry in central Europe during the Late Neolithic4,500 years ago. White arrows indicate the two possible scenarios of the arrival of Indo-European language groups. Symbols of samples are identical to those inFig. 1.

Extended Data Table 1 Number of ancient Eurasian modern human samples screened in genome-wide studies to date
Extended Data Table 2 Summary of the archaeological context for the 69 newly reported samples
Extended Data Table 3 PairwiseFST for all ancient groups with ≥ 2 individuals, present-day Europeans with ≥ 10 individuals, and selected other groups

Supplementary information

Supplementary Information

This file contains Supplementary Information sections 1-11, see contents page for more details (PDF 31143 kb)

Supplementary Data

This file contains Supplementary Data 1. (XLSX 83 kb)

Supplementary Data

This file contains Supplementary Data 2a. (ZIP 12329 kb)

Supplementary Data

This file contains Supplementary Data 2b. (ZIP 14459 kb)

Supplementary Data

This file contains Supplementary Data 2c. (ZIP 9269 kb)

Supplementary Data

This file contains Supplementary Data 2d. (ZIP 2401 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haak, W., Lazaridis, I., Patterson, N.et al. Massive migration from the steppe was a source for Indo-European languages in Europe.Nature522, 207–211 (2015). https://doi.org/10.1038/nature14317

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Steppe change for European languages

David Reich and colleagues generated genome-wide data from 69 Europeans who lived between 8,000 and 3,000 years ago. Their analyses reveal that closely related groups of early farmers — different from indigenous hunter-gatherers — appeared in Germany, Hungary and Spain at around 8,000 to 7,000 years ago. At the same time Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a 24,000-year-old Siberian. By 6,000 to 5,000 years ago, a resurgence of hunter-gatherer ancestry had occurred throughout much of Europe, apart from in Russia. Western and Eastern Europe came into contact about 4,500 years ago, leaving traces of steppe ancestry in present-day Europeans. In addition to providing new insights into Neolithic population dynamics, these analyses lend support to the theory of a steppe origin of at least some of the Indo-European languages of Europe. The reported findings are also consistent with a study of 101 Bronze Age genomes reported onpage 167 of this issue.

Associated content

Ancient DNA steps into the language debate

  • John Novembre
NatureNews & Views

Population genomics of Bronze Age Eurasia

  • Morten E. Allentoft
  • Martin Sikora
  • Eske Willerslev
NatureArticle

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp