Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Genome sequence of a 45,000-year-old modern human from western Siberia

Naturevolume 514pages445–449 (2014)Cite this article

Subjects

Abstract

We present the high-quality genome sequence of a45,000-year-old modern human male from Siberia. This individual derives from a population that lived before—or simultaneously with—the separation of the populations in western and eastern Eurasia and carries a similar amount of Neanderthal ancestry as present-day Eurasians. However, the genomic segments of Neanderthal ancestry are substantially longer than those observed in present-day individuals, indicating that Neanderthal gene flow into the ancestors of this individual occurred 7,000–13,000 years before he lived. We estimate an autosomal mutation rate of 0.4 × 10−9 to 0.6 × 10−9 per site per year, a Y chromosomal mutation rate of 0.7 × 10−9 to 0.9 × 10−9 per site per year based on the additional substitutions that have occurred in present-day non-Africans compared to this genome, and a mitochondrial mutation rate of 1.8 × 10−8 to 3.2 × 10−8 per site per year based on the age of the bone.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geographic location, morphology and dating.
Figure 2: Principal Components (PC) analysis exploring the relationship of Ust’-Ishim to present-day humans.
Figure 3: Statistics testing whether the Ust’-Ishim genome shares more derived alleles with one or the other of two modern human genomes (X, Y).
Figure 4: Inferred population size changes over time.
Figure 5: Regions of Neanderthal ancestry on chromosome 12 in the Ust’-Ishim individual and fifteen present-day non-Africans.
Figure 6: Dating the Neandertal admixture in Ust’-Ishim and present-day non-Africans.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

Data deposits

All sequence data have been submitted to the European Nucleotide Archive (ENA) and are available under the following Ust’-Ishim accession number:PRJEB6622. The data from the 25 present-day human genomes are available from (http://www.simonsfoundation.org/life-sciences/simons-genome-diversity-project/) and from (http://cdna.eva.mpg.de/neandertal/altai/).

References

  1. Trinkaus, E. & Ruff, C. B. Diaphyseal cross-sectional geometry of Near Eastern Middle Paleolithic humans: the femur.J. Archaeol. Sci.26, 409–424 (1999)

    Article  Google Scholar 

  2. Brock, F. et al. Reliability of nitrogen content (%N) and carbon:nitrogen atomic ratios (C:N) as indicators of collagen preservation suitable for radiocarbon dating.Radiocarbon54, 879–886 (2012)

    Article CAS  Google Scholar 

  3. Richards, M. P. & Trinkaus, E. Out of Africa: modern human origins special feature: isotopic evidence for the diets of European Neanderthals and early modern humans.Proc. Natl Acad. Sci. USA106, 16034–16039 (2009)

    Article CAS ADS  Google Scholar 

  4. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual.Science338, 222–226 (2012)

    Article CAS ADS  Google Scholar 

  5. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes.Curr. Biol.23, 553–559 (2013)

    Article CAS  Google Scholar 

  6. The Y Chromosome Consortium A nomenclature system for the tree of human Y-chromosomal binary haplogroups.Genome Res.12, 339–348 (2002)

    Article  Google Scholar 

  7. Shapiro, B. et al. A Bayesian phylogenetic method to estimate unknown sequence ages.Mol. Biol. Evol.28, 879–887 (2011)

    Article CAS  Google Scholar 

  8. Patterson, N. et al. Ancient admixture in human history.Genetics192, 1065–1093 (2012)

    Article  Google Scholar 

  9. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.Nature507, 225–228 (2014)

    Article CAS ADS  Google Scholar 

  10. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans.Nature505, 87–91 (2014)

    Article ADS  Google Scholar 

  11. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans.Nature513, 409–413 (2014)

    Article CAS ADS  Google Scholar 

  12. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains.Nature505, 43–49 (2014)

    Article ADS  Google Scholar 

  13. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences.Nature475, 493–496 (2011)

    Article CAS  Google Scholar 

  14. Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution.Nature Rev. Genet.13, 745–753 (2012)

    Article CAS  Google Scholar 

  15. Kong, A. et al. Rate ofde novo mutations and the importance of father’s age to disease risk.Nature488, 471–475 (2012)

    Article CAS ADS  Google Scholar 

  16. Langergraber, K. E. et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution.Proc. Natl Acad. Sci. USA109, 15716–15721 (2012)

    Article CAS ADS  Google Scholar 

  17. Prüfer, K. et al. The bonobo genome compared with the chimpanzee and human genomes.Nature486, 527–531 (2012)

    Article ADS  Google Scholar 

  18. Xue, Y. et al. Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree.Curr. Biol.19, 1453–1457 (2009)

    Article CAS  Google Scholar 

  19. Kuroki, Y. et al. Comparative analysis of chimpanzee and human Y chromosomes unveils complex evolutionary pathway.Nature Genet.38, 158–167 (2006)

    Article CAS  Google Scholar 

  20. Wang, J., Fan, H. C., Behr, B. & Quake, S. R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm.Cell150, 402–412 (2012)

    Article CAS  Google Scholar 

  21. Sankararaman, S., Patterson, N., Li, H., Pääbo, S. & Reich, D. The date of interbreeding between Neandertals and modern humans.PLoS Genet.8, e1002947 (2012)

    Article CAS  Google Scholar 

  22. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia.Nature468, 1053–1060 (2010)

    Article CAS ADS  Google Scholar 

  23. Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania.Am. J. Hum. Genet.89, 516–528 (2011)

    Article CAS  Google Scholar 

  24. Skoglund, P. & Jakobsson, M. Archaic human ancestry in East Asia.Proc. Natl Acad. Sci. USA108, 18301–18306 (2011)

    Article CAS ADS  Google Scholar 

  25. Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies.Am. J. Phys. Anthropol.128, 415–423 (2005)

    Article  Google Scholar 

  26. McCown, T. D. & Keith, A.The Stone Age of Mount Carmel Vol. 2 (Clarendon, Oxford, 1939)

    Google Scholar 

  27. Vandermeersch, B.Les Hommes Fossiles de Qafzeh (Israel) 319 (Éditions du CNRS, 1981)

    Google Scholar 

  28. Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia.Science334, 94–98 (2011)

    Article CAS ADS  Google Scholar 

  29. Hublin, J. J. The earliest modern human colonization of Europe.Proc. Natl Acad. Sci. USA109, 13471–13472 (2012)

    Article CAS ADS  Google Scholar 

  30. Müller, U. C. et al. The role of climate in the spread of modern humans into Europe.Quat. Sci. Rev.30, 273–279 (2011)

    Article ADS  Google Scholar 

  31. Goebel, T. A., Derevianko, A. P. & Petrin, V. T. Dating the Middle to Upper Paleolithic transition at Kara-Bom.Curr. Anthropol.34, 452–458 (1993)

    Article  Google Scholar 

  32. Kuhn, S. L. & Zwyns, N. Rethinking the initial Upper Paleolithic.Quat. Int.http://dx.doi.org/10.1016/j.quaint.2014.05.040 (2014)

  33. Bronk Ramsey, C., Scott, M. & van der Plicht, H. Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka calbp.Radiocarbon.55, 2021–2027 (2013)

    Article  Google Scholar 

  34. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 Years calbp.Radiocarbon55, 1869–1887 (2009)

    Article  Google Scholar 

  35. Kircher, M., Stenzel, U. & Kelso, J. Improved base calling for the Illumina Genome Analyzer using machine learning strategies.Genome Biol.10, R83 (2009)

    Article  Google Scholar 

  36. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform.Bioinformatics25, 1754–1760 (2009)

    Article CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Gunz, M. Kircher, A. I. Krivoshapkin, P. Nigst, M. Ongyerth, N. Patterson, G. Renaud, U. Stenzel, M. Stoneking and S. Talamo for valuable input, comments and help; T. Pfisterer and H. Temming for technical assistance. Q.F. is funded in part by the Chinese Academy of Sciences (XDA05130202) and the Ministry of Science and Technology of China (2007FY110200); P.A.K. by Urals Branch, Russian Academy of Sciences (12-C-4-1014) and Y.V.K. by the Russian Foundation for Basic Sciences (12-06-00045); F.J. and M.S. by the National Institutes of Health of the USA (R01-GM40282); P.J. by the NIH (K99-GM104158); and T.F.G.H. by ERC advanced grant 324139. D.R. is a Howard Hughes Medical Institute Investigator and supported by the National Science Foundation (1032255) and the NIH (GM100233). Major funding for this work was provided by the Presidential Innovation Fund of the Max Planck Society.

Author information

Authors and Affiliations

  1. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100044, China,

    Qiaomei Fu

  2. Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany,

    Qiaomei Fu, Ayinuer Aximu-Petri, Kay Prüfer, Cesare de Filippo, Matthias Meyer, Michael Lachmann, Janet Kelso, T. Bence Viola & Svante Pääbo

  3. Broad Institute of MIT and Harvard, Cambridge, 02142, Massachusetts, USA

    Heng Li, Priya Moorjani & David Reich

  4. Department of Genetics, Harvard Medical School, Boston, 02115, Massachusetts, USA

    Heng Li & David Reich

  5. Department of Biological Sciences, Columbia University, New York, 10027, New York, USA

    Priya Moorjani

  6. Department of Integrative Biology, University of California, Berkeley, 94720-3140, California, USA

    Flora Jay & Montgomery Slatkin

  7. Institute for Problems of the Development of the North, Siberian Branch of the Russian Academy of Sciences, Tyumen 625026, Russia,

    Sergey M. Slepchenko & Dmitry I. Razhev

  8. Omsk Division of the Ministry of Internal Affairs, Expert Criminalistics Center, Omsk 644007, Russia,

    Aleksei A. Bondarev

  9. Department of Biology, Emory University, Atlanta, 30322, Georgia, USA

    Philip L. F. Johnson

  10. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany,

    Nicolas Zwyns, Domingo C. Salazar-García, Michael P. Richards, Jean-Jacques Hublin & T. Bence Viola

  11. Department of Anthropology, University of California, Davis, 95616, California, USA

    Nicolas Zwyns

  12. Department of Archaeology, University of Cape Town, Cape Town 7701, South Africa,

    Domingo C. Salazar-García

  13. Departament de Prehistòria i Arqueologia, Universitat de València, Valencia 46010, Spain,

    Domingo C. Salazar-García

  14. Research Group on Plant Foods in Hominin Dietary Ecology, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany,

    Domingo C. Salazar-García

  15. Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia,

    Yaroslav V. Kuzmin & Susan G. Keates

  16. Institute of Plant and Animal Ecology, Urals Branch of the Russian Academy of Sciences, Yekaterinburg 620144, Russia,

    Pavel A. Kosintsev

  17. Department of Anthropology, Laboratory of Archaeology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada,

    Michael P. Richards

  18. Siberian Cultural Center, Omsk 644010, Russia,

    Nikolai V. Peristov

  19. Santa Fe Institute, Santa Fe, 87501, New Mexico, USA

    Michael Lachmann

  20. Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK,

    Katerina Douka & Thomas F. G. Higham

  21. Howard Hughes Medical Institute, Harvard Medical School, Boston, 02115, Massachusetts, USA

    David Reich

Authors
  1. Qiaomei Fu
  2. Heng Li
  3. Priya Moorjani
  4. Flora Jay
  5. Sergey M. Slepchenko
  6. Aleksei A. Bondarev
  7. Philip L. F. Johnson
  8. Ayinuer Aximu-Petri
  9. Kay Prüfer
  10. Cesare de Filippo
  11. Matthias Meyer
  12. Nicolas Zwyns
  13. Domingo C. Salazar-García
  14. Yaroslav V. Kuzmin
  15. Susan G. Keates
  16. Pavel A. Kosintsev
  17. Dmitry I. Razhev
  18. Michael P. Richards
  19. Nikolai V. Peristov
  20. Michael Lachmann
  21. Katerina Douka
  22. Thomas F. G. Higham
  23. Montgomery Slatkin
  24. Jean-Jacques Hublin
  25. David Reich
  26. Janet Kelso
  27. T. Bence Viola
  28. Svante Pääbo

Contributions

Q.F., S.M.S., A.A.B., Y.V.K., J.K., T.B.V. and S.P. designed the research. A.A.P. and Q.F. performed the experiments; Q.F., H.L., P.M., F.J., P.L.F.J., K.P., C.d.F., M.M., M.L., M.S., D.R., J.K. and S.P. analysed genetic data; K.D. and T.F.G.H. performed14C dating; D.C.S.-G. and M.P.R. analysed stable isotope data; N.V.P., P.A.K. and D.I.R. contributed samples and data; S.M.S., A.A.B., N.Z., Y.V.K., S.G.K., J.-J.H. and T.B.V. analysed archaeological and anthropological data; Q.F., J.K., T.B.V. and S.P. wrote and edited the manuscript with input from all authors.

Corresponding authors

Correspondence toQiaomei Fu,David Reich,Janet Kelso orT. Bence Viola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information Sections 1-18 – see Supplementary Contents for details (PDF 25041 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Li, H., Moorjani, P.et al. Genome sequence of a 45,000-year-old modern human from western Siberia.Nature514, 445–449 (2014). https://doi.org/10.1038/nature13810

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

A 45,000-year-old human genome

A modern human fossil femur found in 2008 on the banks of the river Irtysh near Ust'-Ishim in western Siberia was dated at about 45,000 years old. Janet Kelso and colleagues have now sequenced and analysed the genome from this individual — a male who was alive before, or at about the time of, the separation of the populations in western and eastern Eurasia. Analyses reveal a level of Neanderthal ancestry similar to that found in present-day Eurasians. Based on the length of the genomic segments of Neanderthal ancestry, the flow of Neanderthal genes into the ancestors of this individual occurred between 7,000 and 13,000 years before he lived. Previous estimates of the timing of interbreeding between modern humans and Neanderthals range from 37,000 and 86,000 years ago, but this study suggests that it occurred approximately 50,000 to 60,000 years ago, coinciding with the expansion of modern humans into Europe, and possibly Asia.

Associated content

Collection

Nobel Prize in Physiology or Medicine 2022

Collection

Human Evolution

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp