Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Ancient human genomes suggest three ancestral populations for present-day Europeans

Naturevolume 513pages409–413 (2014)Cite this article

Subjects

Abstract

We sequenced the genomes of a7,000-year-old farmer from Germany and eight8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes1,2,3,4 with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians3, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations’ deep relationships and show that early European farmers had44% ancestry from a ‘basal Eurasian’ population that split before the diversification of other non-African lineages.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of west Eurasian populations.
Figure 2: Principal Component Analysis.
Figure 3: Modelling the relationship of European to non-European populations.
Figure 4: Estimates of mixture proportions in present-day Europeans.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

Data deposits

The aligned sequences are available through the European Nucleotide Archive under accession numberPRJEB6272. The fully public version of the Human Origins dataset can be found at (http://genetics.med.harvard.edu/reichlab/Reich_Lab/Datasets.html). The full version of the dataset (including additional samples) is available to researchers who send a signed letter to D.R. indicating that they will abide by specified usage conditions (Supplementary Information section 9).

References

  1. Keller, A. et al. New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing.Nature Commun.3, 698 (2012)

    Article ADS CAS  Google Scholar 

  2. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.Nature507, 225–228 (2014)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  3. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans.Nature505, 87–91 (2014)

    Article ADS PubMed CAS  Google Scholar 

  4. Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.Science336, 466–469 (2012)

    Article CAS ADS PubMed  Google Scholar 

  5. Bramanti, B. et al. Genetic discontinuity between local hunter-gatherers and Central Europe’s first farmers.Science326, 137–140 (2009)

    Article CAS ADS PubMed  Google Scholar 

  6. Haak, W. et al. Ancient DNA from European early Neolithic farmers reveals their Near Eastern affinities.PLoS Biol.8, e1000536 (2010)

    Article PubMed PubMed Central CAS  Google Scholar 

  7. Lipson, M. et al. Efficient moment-based inference of admixture parameters and sources of gene flow.Mol. Biol. Evol.30, 1788–1802 (2013)

    Article CAS PubMed PubMed Central  Google Scholar 

  8. Patterson, N. et al. Ancient admixture in human history.Genetics192, 1065–1093 (2012)

    Article PubMed PubMed Central  Google Scholar 

  9. Krause, J. et al. A complete mtDNA genome of an early modern human from Kostenki, Russia.Curr. Biol.20, 231–236 (2010)

    Article CAS PubMed  Google Scholar 

  10. Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA.PLoS ONE7, e34131 (2012)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  11. Haak, W. et al. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites.Science310, 1016–1018 (2005)

    CAS ADS PubMed  Google Scholar 

  12. Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation.Nature Genet.39, 1256–1260 (2007)

    Article CAS PubMed  Google Scholar 

  13. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals.Genome Res.19, 1655–1664 (2009)

    Article CAS PubMed PubMed Central  Google Scholar 

  14. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis.PLoS Genet.2, e190 (2006)

    Article PubMed PubMed Central CAS  Google Scholar 

  15. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history.Nature461, 489–494 (2009)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  16. Moorjani, P. et al. Genetic evidence for recent population mixture in India.Am. J. Hum. Genet.93, 422–438 (2013)

    Article CAS PubMed PubMed Central  Google Scholar 

  17. Reich, D. et al. Reconstructing Native American population history.Nature488, 370–374 (2012)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  18. Botigué, L. R. et al. Gene flow from North Africa contributes to differential human genetic diversity in southern Europe.Proc. Natl Acad. Sci. USA.110, 11791–11796 (2013)

    Article ADS PubMed PubMed Central  Google Scholar 

  19. Cerezo, M. et al. Reconstructing ancient mitochondrial DNA links between Africa and Europe.Genome Res.22, 821–826 (2012)

    Article CAS PubMed PubMed Central  Google Scholar 

  20. Moorjani, P. et al. The history of African gene flow into southern Europeans, Levantines, and Jews.PLoS Genet.7, e1001373 (2011)

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data.PLoS Genet.8, e1002967 (2012)

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China.Proc. Natl Acad. Sci. USA110, 2223–2227 (2013)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  23. Bar-Yosef, O.The Chronology of the Middle Paleolithic of the Levant 39–56 (Plenum Press, 1998)

    Google Scholar 

  24. Armitage, S. J. et al. The southern route “out of Africa”: evidence for an early expansion of modern humans into Arabia.Science331, 453–456 (2011)

    Article CAS ADS PubMed  Google Scholar 

  25. Rose, J. I. et al. The Nubian Complex of Dhofar, Oman: an African middle stone age industry in Southern Arabia.PLoS ONE6, e28239 (2011)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  26. Brace, C. L. et al. The questionable contribution of the Neolithic and the Bronze Age to European craniofacial form.Proc. Natl Acad. Sci. USA103, 242–247 (2006)

    Article CAS ADS PubMed  Google Scholar 

  27. Browning, B. L. & Browning, S. R. Improving the accuracy and efficiency of identity-by-descent detection in population data.Genetics194, 459–471 (2013)

    Article PubMed PubMed Central  Google Scholar 

  28. Ralph, P. & Coop, G. The geography of recent genetic ancestry across Europe.PLoS Biol.11, e1001555 (2013)

    Article CAS PubMed PubMed Central  Google Scholar 

  29. Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure using dense haplotype data.PLoS Genet.8, e1002453 (2012)

    Article CAS PubMed PubMed Central  Google Scholar 

  30. Brandt, G. et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity.Science342, 257–261 (2013)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  31. Delsate, D., Guinet, J.-M. & Saverwyns, S. De l’ocre sur le crâne mésolithique (haplogroupe U5a) de Reuland-Loschbour (Grand-Duché de Luxembourg)?Bull. Soc. Préhist. Luxembourgeoise31, 7–30 (2009)

    Google Scholar 

  32. Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth.Nature Protocols2, 1756–1762 (2007)

    Article CAS PubMed  Google Scholar 

  33. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.Proc. Natl Acad. Sci. USA110, 15758–15763 (2013)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  34. Stäuble, H.Häuser und absolute Datierung der Ältesten Bandkeramik (Habelt, 2005)

    Google Scholar 

  35. Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R. Improved DNA extraction from ancient bones using silica-based spin columns.Am. J. Phys. Anthropol.105, 539–543 (1998)

    Article CAS PubMed  Google Scholar 

  36. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing.Cold Spring Harb. Protoc..http://dx.doi.org/10.1101/prot5448 (2010)

  37. Meyer, M. et al. A high-coverage genome sequence from an Archaic Denisovan individual.Science338, 222–226 (2012)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  38. Briggs, A. W. et al. Removal of deaminated cytosines and detection ofin vivo methylation in ancient DNA.Nucleic Acids Res.38, e87 (2010)

    Article PubMed CAS  Google Scholar 

  39. Kircher, M. Analysis of high-throughput ancient DNA sequencing data.Methods Mol. Biol.480, 197–228 (2012)

    Article CAS  Google Scholar 

  40. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform.Bioinformatics25, 1754–1760 (2009)

    Article CAS PubMed PubMed Central  Google Scholar 

  41. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.Genome Res.20, 1297–1303 (2010)

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products.PLoS ONE5, e14004 (2010)

    Article ADS PubMed PubMed Central CAS  Google Scholar 

  43. Behar, D. M. et al. A Copernican reassessment of the human mitochondrial DNA tree from its root.Am. J. Hum. Genet.90, 675–684 (2012)

    Article CAS PubMed PubMed Central  Google Scholar 

  44. Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing.Cell134, 416–426 (2008)

    Article CAS PubMed PubMed Central  Google Scholar 

  45. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes.Curr. Biol.23, 553–559 (2013)

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Fu, Q. et al. The complete genome sequence of a 45,000-year-old modern human from western Siberia.Nature (in the press)

  47. Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia.Science334, 94–98 (2011)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  48. Vianello, D. et al. HAPLOFIND: a new method for high-throughput mtDNA haplogroup assignment.Hum. Mutat.34, 1189–1194 (2013)

    Article PubMed  Google Scholar 

  49. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Mol. Biol. Evol.28, 2731–2739 (2011)

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of ancient human remains using DNA shotgun sequencing.J. Archaeol. Sci.40, 4477–4482 (2013)

    Article CAS  Google Scholar 

  51. Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees.BMC Evol. Biol.7, 214 (2007)

    Article PubMed PubMed Central CAS  Google Scholar 

  52. Lippold, S. et al. Human paternal and maternal demographic histories: insights from high-resolution Y chromosome and mtDNA sequences. Preprint atbioRxiv,http://dx.doi.org/10.1101/001792 (2014)

  53. Green, R. E. et al. A draft sequence of the Neandertal genome.Science328, 710–722 (2010)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  54. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia.Nature468, 1053–1060 (2010)

    Article CAS ADS PubMed PubMed Central  Google Scholar 

  55. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains.Nature505, 43–49 (2014)

    Article ADS PubMed CAS  Google Scholar 

  56. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences.Nature475, 493–496 (2011)

    Article CAS PubMed PubMed Central  Google Scholar 

  57. Hach, F. et al. mrsFAST: a cache-oblivious algorithm for short-read mapping.Nature Methods7, 576–577 (2010)

    Article CAS PubMed PubMed Central  Google Scholar 

  58. The 1000 Genomes Project Consortium An integrated map of genetic variation from 1,092 human genomes.Nature491, 56–65 (2012)

    Article PubMed Central CAS  Google Scholar 

  59. Danecek, P. et al. The variant call format and VCFtools.Bioinformatics27, 2156–2158 (2011)

    Article CAS PubMed PubMed Central  Google Scholar 

  60. Li, H. The sequence alignment/map (SAM) format and SAMtools.Bioinformatics25, 2078–2079 (2009)

    Article PubMed PubMed Central CAS  Google Scholar 

  61. Keinan, A., Mullikin, J. C., Patterson, N. & Reich, D. Measurement of the human allele frequency spectrum demonstrates greater genetic drift in East Asians than in Europeans.Nature Genet.39, 1251–1255 (2007)

    Article CAS PubMed  Google Scholar 

  62. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies.Nature Genet.38, 904–909 (2006)

    Article CAS PubMed  Google Scholar 

  63. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses.Am. J. Hum. Genet.81, 559–575 (2007)

    Article CAS PubMed PubMed Central  Google Scholar 

  64. Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation.BMC Bioinformatics12, 246 (2011)

    Article PubMed PubMed Central  Google Scholar 

  65. Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure.Bioinformatics23, 1801–1806 (2007)

    Article CAS PubMed  Google Scholar 

  66. Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies.Nature Rev. Genet.11, 459–463 (2010)

    Article CAS PubMed  Google Scholar 

  67. Busing, F. T. A., Meijer, E. & Leeden, R. Delete-m Jackknife for Unequal m.Stat. Comput.9, 3–8 (1999)

    Article  Google Scholar 

  68. Loh, P.-R. et al. Inferring admixture histories of human populations using linkage disequilibrium.Genetics193, 1233–1254 (2013)

    Article PubMed PubMed Central  Google Scholar 

  69. Nelson, M. R. et al. The population reference sample, POPRES: a resource for population, disease, and pharmacological genetics research.Am. J. Hum. Genet.83, 347–358 (2008)

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the 1,615 volunteers from 147 diverse populations who donated DNA samples and whose genetic data are newly reported in this study. We are grateful to C. Beall, N. Bradman, A. Gebremedhin, D. Labuda, M. Nelis and A. Di Rienzo for sharing DNA samples; to D. Weigel, C. Lanz, V. Schünemann, P. Bauer and O. Riess for support and access to DNA sequencing facilities; to P. Johnson for advice on contamination estimation; to G. Hellenthal for help with the ChromoPainter software; and to P. Skoglund for sharing graphics software. We thank K. Nordtvedt for alerting us to newly discovered Y-chromosome SNPs. We downloaded the POPRES data from dbGaP at (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000145.v4.p2) through dbGaP accession number phs000145.v1.p2. We thank all the volunteers who donated DNA. We thank the staff of the Unità Operativa Complessa di Medicina Trasfusionale, Azienda Ospedaliera Umberto I, Siracusa, Italy for assistance in sample collection; and The National Laboratory for the Genetics of Israeli Populations for facilitating access to DNA. We thank colleagues at the Applied Genomics at the Children’s Hospital of Philadelphia, especially H. Hakonarson, C. Kim, K. Thomas, and C. Hou, for genotyping samples on the Human Origins array. J.Kr., A.M. and C.P. are grateful for support from DFG grant number KR 4015/1-1, the Carl-Zeiss Foundation and the Baden Württemberg Foundation. S.P., G.R., Q.F., C.F., K.P., S.C. and J.Ke. acknowledge support from the Presidential Innovation Fund of the Max Planck Society. G.R. was supported by an NSERC fellowship. J.G.S. acknowledges use of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF grant number OCI-1053575. E.B. and O.B. were supported by RFBR grants 13-06-00670, 13-04-01711, 13-04-90420 and by the Molecular and Cell Biology Program of the Presidium, Russian Academy of Sciences. B.M. was supported by grants OTKA 73430 and 103983. A.Saj. was supported by a Finnish Professorpool (Paulo Foundation) Grant. The Lithuanian sampling was supported by the LITGEN project (VP1-3.1-ŠMM-07-K-01-013), funded by the European Social Fund under the Global Grant Measure. A.S. was supported by Spanish grants SAF2011-26983 and EM 2012/045. O.U. was supported by Ukrainian SFFS grant F53.4/071. S.A.T. was supported by NIH Pioneer Award 8DP1ES022577-04 and NSF HOMINID award BCS-0827436. K.T. was supported by an Indian CSIR Network Project (GENESIS: BSC0121). L.S. was supported by an Indian CSIR Bhatnagar Fellowship. R.V., M.M., J.P. and E.M. were supported by the European Union Regional Development Fund through the Centre of Excellence in Genomics to the Estonian Biocentre and University of Tartu and by an Estonian Basic Research grant SF0270177As08. M.M. was additionally supported by Estonian Science Foundation grant number 8973. J.G.S. and M.S. were supported by NIH grant GM40282. P.H.S. and E.E.E. were supported by NIH grants HG004120 and HG002385. D.R. and N.P. were supported by NSF HOMINID award BCS-1032255 and NIH grant GM100233. D.R. and E.E.E. are Howard Hughes Medical Institute investigators. This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN26120080001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. This Research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Author notes
  1. Theologos Loukidis & Lalji Singh

    Present address: Present addresses: Amgen, 33 Kazantzaki Str, Ilioupolis 16342, Athens, Greece (T.L.); Banaras Hindu University, Varanasi 221 005, India (L.S.).,

  2. Ruslan Ruizbakiev: Deceased.

Authors and Affiliations

  1. Department of Genetics, Harvard Medical School, Boston, 02115, Massachusetts, USA

    Iosif Lazaridis, Swapan Mallick, Qiaomei Fu, Susanne Nordenfelt, Heng Li, Nadin Rohland & David Reich

  2. Broad Institute of Harvard and MIT, Cambridge, 02142, Massachusetts, USA

    Iosif Lazaridis, Nick Patterson, Swapan Mallick, Bonnie Berger, Susanne Nordenfelt, Heng Li, Nadin Rohland & David Reich

  3. Institute for Archaeological Sciences, University of Tübingen, Tübingen, 72074, Germany

    Alissa Mittnik, Kirsten I. Bos, Cosimo Posth & Johannes Krause

  4. Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany

    Gabriel Renaud, Sergi Castellano, Qiaomei Fu, Cesare de Filippo, Kay Prüfer, Susanna Sawyer, Matthias Meyer, Svante Pääbo & Janet Kelso

  5. Institute of Anthropology, Johannes Gutenberg University Mainz, Mainz D-55128, Germany.,

    Karola Kirsanow, Ruth Bollongino & Joachim Burger

  6. Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA

    Peter H. Sudmant, Joshua G. Schraiber & Evan E. Eichler

  7. Department of Integrative Biology, University of California, Berkeley, 94720-3140, California, USA

    Joshua G. Schraiber, William Klitz & Montgomery Slatkin

  8. Department of Mathematics and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA

    Mark Lipson & Bonnie Berger

  9. Archaeological Research Laboratory, Stockholm University, 114 18, Sweden.,

    Christos Economou

  10. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100049, China.,

    Qiaomei Fu

  11. Australian Centre for Ancient DNA and Environment Institute, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, 5005, South Australia, Australia

    Wolfgang Haak & Alan Cooper

  12. The Cultural Heritage Foundation, Västerås 722 12, Sweden.,

    Fredrik Hallgren & Elin Fornander

  13. National Museum of Natural History, L-2160, Luxembourg.,

    Dominique Delsate & Jean-Michel Guinet

  14. National Center of Archaeological Research, National Museum of History and Art, L-2345, Luxembourg.,

    Dominique Delsate

  15. Department of Paleoanthropology, Senckenberg Center for Human Evolution and Paleoenvironment, University of Tübingen, Tübingen D-72070, Germany.,

    Michael Francken

  16. State Office for Cultural Heritage Management Baden-Württemberg, Osteology, Konstanz D-78467, Germany.,

    Joachim Wahl

  17. Center for Global Health and Child Development, Kisumu 40100, Kenya.,

    George Ayodo

  18. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.,

    Hamza A. Babiker

  19. Biochemistry Department, Faculty of Medicine, Sultan Qaboos University, Alkhod, Muscat 123, Oman.,

    Hamza A. Babiker

  20. Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular (IMBICE), CCT-CONICET & CICPBA, La Plata, B1906APO, Argentina.,

    Graciela Bailliet & Claudio M. Bravi

  21. Research Centre for Medical Genetics, Moscow 115478, Russia.,

    Elena Balanovska & Oleg Balanovsky

  22. Vavilov Institute for General Genetics, Moscow 119991, Russia.,

    Oleg Balanovsky

  23. Escuela de Biología, Universidad de Costa Rica, San José 2060, Costa Rica.,

    Ramiro Barrantes

  24. Institute of Biology, Research group GENMOL, Universidad de Antioquia, Medellín, Colombia

    Gabriel Bedoya

  25. Rambam Health Care Campus, Haifa 31096, Israel.,

    Haim Ben-Ami

  26. Department of Medical Genetics and Szentagothai Research Center, University of Pécs, Pécs H-7624, Hungary.,

    Judit Bene & Béla Melegh

  27. Al Akhawayn University in Ifrane (AUI), School of Science and Engineering, Ifrane 53000, Morocco.,

    Fouad Berrada

  28. Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome 00168, Italy.,

    Francesca Brisighelli

  29. Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.,

    George B. J. Busby & Cristian Capelli

  30. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.,

    George B. J. Busby

  31. Laboratorio di Genetica Molecolare, IRCCS Associazione Oasi Maria SS, Troina 94018, Italy.,

    Francesco Cali

  32. Belgorod State University, Belgorod 308015, Russia.,

    Mikhail Churnosov

  33. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada.,

    David E. C. Cole

  34. Servicio de Huellas Digitales Genéticas, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, 1113 CABA, Argentina.,

    Daniel Corach

  35. Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,

    Larissa Damba, Marina Gubina, Ludmila Osipova, Olga Posukh & Mikhail Voevoda

  36. Institute of Linguistics, University of Bern, Bern CH-3012, Switzerland.,

    George van Driem

  37. Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, Russian Academy of Science, Siberian Branch, Novosibirsk 630090, Russia.,

    Stanislav Dryomov, Elena B. Starikovskaya & Rem Sukernik

  38. Anthropologie Moléculaire et Imagerie de Synthèse, CNRS UMR 5288, Université Paul Sabatier Toulouse III, Toulouse 31000, France.,

    Jean-Michel Dugoujon

  39. North-Eastern Federal University and Yakut Research Center of Complex Medical Problems, Yakutsk 677013, Russia.,

    Sardana A. Fedorova

  40. Department of Human Genetics, University of Chicago, Chicago, 60637, Illinois, USA

    Irene Gallego Romero & Aashish R. Jha

  41. ARL Division of Biotechnology, University of Arizona, Tucson, 85721, Arizona, USA

    Michael Hammer

  42. Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA.,

    Brenna M. Henn

  43. Department of Clinical Science, University of Bergen, Bergen 5021, Norway.,

    Tor Hervig

  44. NextBio, Illumina, Santa Clara, California 95050, USA.,

    Ugur Hodoglugil

  45. Department of Medical Genetics, National Human Genome Center, Medical University Sofia, Sofia 1431, Bulgaria.,

    Sena Karachanak-Yankova, Desislava Nesheva & Draga Toncheva

  46. Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, Ufa 450054, Russia.,

    Rita Khusainova, Elza Khusnutdinova & Sergey Litvinov

  47. Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa 450074, Russia.,

    Rita Khusainova, Elza Khusnutdinova & Sergey Litvinov

  48. College of Medicine, University of Arizona, Tucson, 85724, Arizona, USA

    Rick Kittles

  49. Division of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, UK.,

    Toomas Kivisild

  50. Department of Human and Medical Genetics, Vilnius University, Vilnius LT-08661, Lithuania.,

    Vaidutis Kučinskas & Ingrida Uktveryte

  51. Estonian Biocentre, Evolutionary Biology group, Tartu, 51010, Estonia.,

    Alena Kushniarevich, Sergey Litvinov, Hovhannes Sahakyan, Richard Villems & Mait Metspalu

  52. Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France.,

    Leila Laredj

  53. Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,

    Theologos Loukidis, Mark G. Thomas & Andres Ruiz-Linares

  54. Gladstone Institutes, San Francisco, 94158, California, USA

    Robert W. Mahley

  55. Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia.,

    Ene Metspalu, Jüri Parik & Richard Villems

  56. Centro de Investigaciones Biomédicas de Guatemala, Ciudad de Guatemala, Guatemala.,

    Julio Molina

  57. Research Department, 23andMe, Mountain View, California 94043, USA.,

    Joanna Mountain

  58. Cultural Anthropology Program, University of Oulu, Oulu 90014, Finland.,

    Klemetti Näkkäläjärvi

  59. Department of Biochemistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam 65001, Tanzania.,

    Thomas Nyambo

  60. Research Institute of Health, North-Eastern Federal University, Yakutsk 677000, Russia.,

    Fedor Platonov

  61. Dipartimento di Fisica e Chimica, Università di Palermo, Palermo 90128, Italy.,

    Valentino Romano

  62. Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile.,

    Francisco Rothhammer

  63. Programa de Genética Humana ICBM Facultad de Medicina Universidad de Chile, Santiago 8320000, Chile.,

    Francisco Rothhammer

  64. Centro de Investigaciones del Hombre en el Desierto, Arica 1000000, Chile.,

    Francisco Rothhammer

  65. Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh EH8 9AG, UK.,

    Igor Rudan

  66. Institute of Immunology, Academy of Science, Tashkent 70000, Uzbekistan.,

    Ruslan Ruizbakiev

  67. Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia.,

    Hovhannes Sahakyan & Levon Yepiskoposyan

  68. Department of Forensic Medicine, Hjelt Institute, University of Helsinki, Helsinki 00014, Finland.,

    Antti Sajantila

  69. Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, 76107, Texas, USA

    Antti Sajantila

  70. Departamento de Anatomía Patolóxica e Ciencias Forenses, Unidade de Xenética, and Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, Galcia 15872, Spain.,

    Antonio Salas

  71. Research Fellow, Henry Stewart Group, Russell House, London WC1A 2HN, UK.,

    Ayele Tarekegn

  72. Institute of Bioorganic Chemistry Academy of Sciences Republic of Uzbekistan, Tashkent 100125, Uzbekistan.,

    Shahlo Turdikulova

  73. Department of Genetics and Cytology, V. N. Karazin Kharkiv National University, Kharkiv 61077, Ukraine.,

    Olga Utevska

  74. Instituto Boliviano de Biología de la Altura, Universidad Mayor de San Andrés, 591 2 La Paz, Bolivia.,

    René Vasquez & Mercedes Villena

  75. UniversidadAutonoma Tomás Frías, Potosí, Bolivia

    René Vasquez & Mercedes Villena

  76. Institute of Internal Medicine, Siberian Branch of Russian Academy of Medical Sciences, Novosibirsk 630089, Russia.,

    Mikhail Voevoda

  77. Novosibirsk State University, Novosibirsk 630090, Russia.,

    Mikhail Voevoda

  78. Basic Research Laboratory, NCI, NIH, Frederick National Laboratory, Leidos Biomedical, Frederick, Maryland 21702, USA.,

    Cheryl A. Winkler

  79. Lebanese American University, School of Medicine, Beirut 13-5053, Lebanon.,

    Pierre Zalloua

  80. Harvard School of Public Health, Boston, 02115, Massachusetts, USA

    Pierre Zalloua

  81. Department of Medical Biology, University of Split, School of Medicine, Split 21000, Croatia.,

    Tatijana Zemunik

  82. Department of Biology and Genetics, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, USA

    Sarah A. Tishkoff

  83. CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India.,

    Lalji Singh & Kumarasamy Thangaraj

  84. Estonian Academy of Sciences, Tallinn 10130, Estonia.,

    Richard Villems

  85. Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain.,

    David Comas

  86. Howard Hughes Medical Institute, University of Washington, Seattle, 98195, Washington, USA

    Evan E. Eichler

  87. Howard Hughes Medical Institute, Harvard Medical School, Boston, 02115, Massachusetts, USA

    David Reich

  88. Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, 72070 Tübingen, Germany.,

    Johannes Krause

  89. Max Planck Institut für Geschichte und Naturwissenschaften, Jena 07745, Germany.,

    Johannes Krause

Authors
  1. Iosif Lazaridis
  2. Nick Patterson
  3. Alissa Mittnik
  4. Gabriel Renaud
  5. Swapan Mallick
  6. Karola Kirsanow
  7. Peter H. Sudmant
  8. Joshua G. Schraiber
  9. Sergi Castellano
  10. Mark Lipson
  11. Bonnie Berger
  12. Christos Economou
  13. Ruth Bollongino
  14. Qiaomei Fu
  15. Kirsten I. Bos
  16. Susanne Nordenfelt
  17. Heng Li
  18. Cesare de Filippo
  19. Kay Prüfer
  20. Susanna Sawyer
  21. Cosimo Posth
  22. Wolfgang Haak
  23. Fredrik Hallgren
  24. Elin Fornander
  25. Nadin Rohland
  26. Dominique Delsate
  27. Michael Francken
  28. Jean-Michel Guinet
  29. Joachim Wahl
  30. George Ayodo
  31. Hamza A. Babiker
  32. Graciela Bailliet
  33. Elena Balanovska
  34. Oleg Balanovsky
  35. Ramiro Barrantes
  36. Gabriel Bedoya
  37. Haim Ben-Ami
  38. Judit Bene
  39. Fouad Berrada
  40. Claudio M. Bravi
  41. Francesca Brisighelli
  42. George B. J. Busby
  43. Francesco Cali
  44. Mikhail Churnosov
  45. David E. C. Cole
  46. Daniel Corach
  47. Larissa Damba
  48. George van Driem
  49. Stanislav Dryomov
  50. Jean-Michel Dugoujon
  51. Sardana A. Fedorova
  52. Irene Gallego Romero
  53. Marina Gubina
  54. Michael Hammer
  55. Brenna M. Henn
  56. Tor Hervig
  57. Ugur Hodoglugil
  58. Aashish R. Jha
  59. Sena Karachanak-Yankova
  60. Rita Khusainova
  61. Elza Khusnutdinova
  62. Rick Kittles
  63. Toomas Kivisild
  64. William Klitz
  65. Vaidutis Kučinskas
  66. Alena Kushniarevich
  67. Leila Laredj
  68. Sergey Litvinov
  69. Theologos Loukidis
  70. Robert W. Mahley
  71. Béla Melegh
  72. Ene Metspalu
  73. Julio Molina
  74. Joanna Mountain
  75. Klemetti Näkkäläjärvi
  76. Desislava Nesheva
  77. Thomas Nyambo
  78. Ludmila Osipova
  79. Jüri Parik
  80. Fedor Platonov
  81. Olga Posukh
  82. Valentino Romano
  83. Francisco Rothhammer
  84. Igor Rudan
  85. Ruslan Ruizbakiev
  86. Hovhannes Sahakyan
  87. Antti Sajantila
  88. Antonio Salas
  89. Elena B. Starikovskaya
  90. Ayele Tarekegn
  91. Draga Toncheva
  92. Shahlo Turdikulova
  93. Ingrida Uktveryte
  94. Olga Utevska
  95. René Vasquez
  96. Mercedes Villena
  97. Mikhail Voevoda
  98. Cheryl A. Winkler
  99. Levon Yepiskoposyan
  100. Pierre Zalloua
  101. Tatijana Zemunik
  102. Alan Cooper
  103. Cristian Capelli
  104. Mark G. Thomas
  105. Andres Ruiz-Linares
  106. Sarah A. Tishkoff
  107. Lalji Singh
  108. Kumarasamy Thangaraj
  109. Richard Villems
  110. David Comas
  111. Rem Sukernik
  112. Mait Metspalu
  113. Matthias Meyer
  114. Evan E. Eichler
  115. Joachim Burger
  116. Montgomery Slatkin
  117. Svante Pääbo
  118. Janet Kelso
  119. David Reich
  120. Johannes Krause

Contributions

B.B., E.E.E., J.Bu., M.S., S.P., J.Ke., D.R. and J.Kr. supervised the study. I.L., N.P., A.M., G.R., S.M., K.K., P.H.S., J.G.S., S.C., M.L., Q.F., H.L., C.dF., K.P., W.H., M.Met., M.Mey. and D.R. analysed genetic data. F.H., E.F., D.D., M.F., J.-M.G., J.W., A.C. and J.Kr. obtained human remains. A.M., C.E., R.Bo., K.I.B., S.S., C.P., N.R. and J.Kr. processed ancient DNA. I.L., N.P., S.N., N.R., G.A., H.A.B., G.Ba., E.B., O.B., R.Ba., G.Be., H.B.-A., J.Be., F.Be., C.M.B., F.Br., G.B.J.B., F.C., M.C., D.E.C.C., D.Cor., L.D., G.vD., S.D., J.-M.D., S.A.F., I.G.R., M.G., M.H., B.M.H., T.H., U.H., A.R.J., S.K.-Y., R.Kh., E.K., R.Ki., T.K., W.K., V.K., A.K., L.L., S.L., T.L., R.W.M., B.M., E.M., J.Mol., J.Mou., K.N., D.N., T.N., L.O., J.P., F.P., O. P., V.R., F.R., I.R., R.R., H.S., A.Saj., A.Sal., E.B.S., A.Tar., D.T., S.T., I.U., O.U., R.Va., M.Vi., M.Vo., C.A.W., L.Y., P.Z., T.Z., C.C., M.G.T., A.R.-L., S.A.T., L.S., K.T., R.Vi., D.Com., R.S., M.Met., S.P. and D.R. assembled the genotyping dataset. I.L., N.P., D.R. and J.Kr. wrote the manuscript with help from all co-authors.

Corresponding authors

Correspondence toDavid Reich orJohannes Krause.

Ethics declarations

Competing interests

U.H. is an employee of Illumina, T.L. is an employee of Amgen, and J.M. is an employee of 23andMe.

Extended data figures and tables

Extended Data Figure 1 Photographs of analysed ancient samples.

a, Loschbour skull.b, Stuttgart skull, missing the lower right M2 we sampled.c, Excavation at Kanaljorden in Motala, Sweden.d, Motala 1in situ.

Extended Data Figure 2 Pairwise sequential Markovian coalescent (PSMC) analysis.

a, Inference of population size as a function of time, showing a very small recent population size over the most recent period in the ancestry of Loschbour (at least the last 5–10 thousand years).b, Inferred time since the most recent common ancestor from the PSMC for chromosomes 20, 21, 22 (top to bottom); Stuttgart is plotted on top and Loschbour at bottom.

Extended Data Figure 3 ADMIXTURE analysis (K = 2 toK = 20).

Ancient samples (Loschbour, Stuttgart, Motala_merge, Motala12, MA1, and LaBraña) are on the left.

Extended Data Figure 4 ANE ancestry is present in both Europe and the Near East but WHG ancestry is restricted to Europe, which cannot be due to a single admixture event.

On thex axis we present the statisticf4(Test, Stuttgart; MA1, Chimp), which measures where MA1 shares more alleles with a test population than with Stuttgart. It is positive for most European and Near Eastern populations, consistent with ANE (MA1-related) gene flow into both regions. On they axis we present the statisticf4(Test, Stuttgart; Loschbour, Chimp), which measures whether Loschbour shares more alleles with a test sample than with Stuttgart. Only European populations show positive values of this statistic, providing evidence of WHG (Loschbour-related) admixture only in Europeans.

Extended Data Figure 5 MA1 is the best surrogate for ANE for which we have data.

Europeans share more alleles with MA1 than with Karitiana, as we see from the fact that in a plot off4(Test, BedouinB; MA1, Chimp) andf4(Test, BedouinB; Karitiana, Chimp), the European cline deviates in the direction of MA1, rather than Karitiana (the slope is > 1 and European populations are above the line indicating inequality of these two statistics).

Extended Data Figure 6 The differential relatedness of west Eurasians to Stuttgart (EEF), Loschbour (WHG), and MA1 (ANE) cannot be explained by two-way mixture.

We plot on a West Eurasian map the statisticf4(Test, Chimp;A1, A2), whereA1 andA2 are a pair of the three ancient samples representing the three ancestral populations of Europe.a, In both Europe and the Near East/Caucasus, populations from the south have more relatedness to Stuttgart than those from the north where ANE influence is also important.b, Northern European populations share more alleles with Loschbour than with Stuttgart, as they have additional WHG ancestry beyond what was already present in EEF.c, We observe a striking contrast between Europe west of the Caucasus and the Near East in degree of relatedness to WHG. In Europe, there is a much higher degree of allele sharing with Loschbour than with MA1, which we ascribe to the 60–80% WHG/(WHG + ANE) ratio in most Europeans that we report inSupplementary Information section 14. In contrast, the Near East has no appreciable WHG ancestry but some ANE ancestry, especially in the northern Caucasus. (Jewish populations are marked with a square in this figure to assist in interpretation as their ancestry is often anomalous for their geographic regions.)

Extended Data Figure 7 Evidence for Siberian gene flow into far north-eastern Europe.

Some north-eastern European populations (Chuvash, Finnish, Russian, Mordovian, Saami) share more alleles with Han Chinese than with other Europeans who are arrayed in a cline from Stuttgart to Lithuanians/Estonians in a plot off4(Test, BedouinB; Han, Mbuti) againstf4(Test, BedouinB; MA1, Mbuti).

Extended Data Table 1 West Eurasians genotyped on the Human Origins array and keyf statistics
Extended Data Table 2 Confirmation of key findings on transversions and on whole-genome sequence data
Extended Data Table 3 Admixture proportions for European populations

Supplementary information

Supplementary Information

This file contains Supplementary Information Parts 1-19 – see Supplementary Contents for details.This file contains Supplementary Information Parts 1-19 – see Supplementary Contents for details. (PDF 9752 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazaridis, I., Patterson, N., Mittnik, A.et al. Ancient human genomes suggest three ancestral populations for present-day Europeans.Nature513, 409–413 (2014). https://doi.org/10.1038/nature13673

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

The genetics of European prehistory

By sequencing and comparing the genomes of nine ancient Europeans that bridge the transition to agriculture in Europe between 8,000 and 7,000 years ago, David Reich and colleagues show that most present-day Europeans derive from at least three highly differentiated populations — west European hunter-gatherers, ancient north Eurasians (related to Upper Palaeolithic Siberians) and early European farmers of mainly Near Eastern origin. They further propose that early European farmers had about 44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages. These results raise interesting new questions, for instance that of where and when the Near Eastern farmers mixed with European hunter-gatherers to produce the early European farmers.

Associated content

Collection

Nobel Prize in Physiology or Medicine 2022

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp