- Review Article
- Published:
Circuit dynamics of adaptive and maladaptive behaviour
Naturevolume 505, pages309–317 (2014)Cite this article
18kAccesses
25Altmetric
Subjects
Abstract
The recent development of technologies for investigating specific components of intact biological systems has allowed elucidation of the neural circuitry underlying adaptive and maladaptive behaviours. Investigators are now able to observe and control, with high spatio-temporal resolution, structurally defined intact pathways along which electrical activity flows during and after the performance of complex behaviours. These investigations have revealed that control of projection-specific dynamics is well suited to modulating behavioural patterns that are relevant to a broad range of psychiatric diseases. Structural dynamics principles have emerged to provide diverse, unexpected and causal insights into the operation of intact and diseased nervous systems, linking form and function in the brain.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others

Neurophysiological avenues to better conceptualizing adaptive cognition

Synaptic plasticity and mental health: methods, challenges and opportunities
References
Akil, H. et al. The future of psychiatric research: genomes and neural circuits.Science327, 1580–1581 (2010).
Deisseroth, K. Optogenetics and psychiatry: applications, challenges, and opportunities.Biol. Psychiatry71, 1030–1032 (2012).
Abbott, A. Novartis to shut brain research facility.Nature480, 161–162 (2011).
Deisseroth, K. Controlling the brain with light.Sci. Am.303, 48–55 (2010).
Maks, C. B., Butson, C. R., Walter, B. L., Vitek, J. L. & McIntyre, C. C. Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes.J. Neurol. Neurosurg. Psychiatry80, 659–666 (2009).
Holtzheimer, P. E. & Mayberg, H. S. Deep brain stimulation for psychiatric disorders.Annu. Rev. Neurosci.34, 289–307 (2011).This is a recent comprehensive review of DBS targets and effects in psychiatry.
Oluigbo, C. O., Salma, A. & Rezai, A. R. Deep brain stimulation for neurological disorders.IEEE Rev. Biomed. Eng.5, 88–99 (2012).
Benabid, A. L. & Torres, N. New targets for DBS.Parkinsonism Relat. Disord.18 (Suppl 1), 21–23 (2012).
Goodman, W. K. & Alterman, R. L. Deep brain stimulation for intractable psychiatric disorders.Annu. Rev. Med.63, 511–524 (2012).
Bewernick, B. H., Kayser, S., Sturm, V. & Schlaepfer, T. E. Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy.Neuropsychopharmacology37, 1975–1985 (2012).
Chan, D. T. et al. Complications of deep brain stimulation: a collective review.Asian J. Surg.32, 258–263 (2009).
Birdno, M. J. & Grill, W. M. Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency.Neurotherapeutics5, 14–25 (2008).
Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry.Science324, 354–359 (2009).This initial study of optogenetic projection control in modulating behaviour targeted afferents to the subthalamic nucleus that influence parkinsonian symptoms.
Andrews-Zwilling, Y. et al. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval.PLoS ONE7, e40555 (2012).
Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems.Genes Brain Behav.2, 255–267 (2003).
Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction.Nature477, 171–178 (2011).
Chao, H. T. et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.Nature468, 263–269 (2010).
Akam, T., Oren, I., Mantoan, L., Ferenczi, E. & Kullmann, D. M. Oscillatory dynamics in the hippocampus support dentate gyrus–CA3 coupling.NatureNeurosci.15, 763–768 (2012).
Blumhagen, F. et al. Neuronal filtering of multiplexed odour representations.Nature479, 493–498 (2011).
Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses.Nature459, 663–667 (2009).
Carlén, M. et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior.Mol. Psychiatry17, 537–548 (2012).
Figee, M. et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder.Nature Neurosci.16, 386–387 (2013).
Rho, Y. A., McIntosh, R. A. & Jirsa, V. K. Synchrony of two brain regions predicts the blood oxygen level dependent activity of a third.Brain Connect.1, 73–80 (2011).
Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance.Nature459, 698–702 (2009).
Tiesinga, P. H. & Sejnowski, T. J. Mechanisms for phase shifting in cortical networks and their role in communication through coherence.Front. Hum. Neurosci.4, 196 (2010).
Jirsa, V. K. Connectivity and dynamics of neural information processing.Neuroinformatics2, 183–204 (2004).
Stroh, A. et al. Making waves: initiation and propagation of corticothalamic Ca2+ wavesin vivo.Neuron77, 1136–1150 (2013).
Airan, R. D. et al. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression.Science317, 819–823 (2007).
Gutierrez, G. J., O'Leary, T. & Marder, E. Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators.Neuron77, 845–858 (2013).
Deisseroth, K. Optogenetics.Nature Methods8, 26–29 (2011).
Packer, A. M., Roska, B. & Hausser, M. Targeting neurons and photons for optogenetics.Nature Neurosci.16, 805–815 (2013).
Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics.Annu. Rev. Neurosci.34, 389–412 (2011).
Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems.Neuron71, 9–34 (2011).
Gradinaru, V. et al. Targeting and readout strategies for fast optical neural controlin vitro andin vivo.J. Neurosci.27, 14231–14238 (2007).
Li, Q. et al. Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex.Neuron76, 1030–1041 (2012).
Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety.Nature471, 358–362 (2011).This was the initial study targeting specific projections in behaviour; gain- or loss-of-function was delivered by optogenetic excitation or inhibition to a specific amygdala projection, with the resulting bidirectional expression of anxiety-related behaviours.
Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics.Front. Mol. Neurosci.6, 2 (2013).
Kuhn, B., Ozden, I., Lampi, Y., Hasan, M. T. & Wang, S. S. An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex.Front. Neural Circuits6, 49 (2012).
Saunders, A., Johnson, C. A. & Sabatini, B. L. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons.Front. Neural Circuits6, 47 (2012).
Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons.Nature450, 420–424 (2007).
Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.Nature Protocols5, 439–456 (2010).
Osakada, F. et al. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits.Neuron71, 617–631 (2011).
Antinone, S. E. & Smith, G. A. Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis.J. Virol.84, 1504–1512 (2010).
Miyamichi, K. et al. Cortical representations of olfactory input by trans-synaptic tracing.Nature472, 191–196 (2011).
Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons.Neuron53, 639–647 (2007).References 44 and 45 describe rabies-based tools used to define and study afferent projections to cell populationsin vivo.
Lima, S. Q., Hromadka, T., Znamenskiy, P. & Zador, A. M. PINP: a new method of tagging neuronal populations for identification duringin vivo electrophysiological recording.PLoS ONE4, e6099 (2009).
Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area.Nature482, 85–88 (2012).
Znamenskiy, P. & Zador, A. M. Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination.Nature497, 482–485 (2013).
Lichtman, J. W. & Denk, W. The big and the small: challenges of imaging the brain's circuits.Science334, 618–623 (2011).
Osten, P. & Margrie, T. W. Mapping brain circuitry with a light microscope.Nature Methods10, 515–523 (2013).
Bock, D.D. et al. Network anatomy andin vivo physiology of visual cortical neurons.Nature471, 177–182 (2011).
Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina.Nature471, 183–188 (2011).
Micheva, K. D. & Smith, S. J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits.Neuron55, 25–36 (2007).
Hama, H. et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain.Nature Neurosci.14, 1481–1488 (2011).
Dodt, H. U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain.Nature Methods4, 331–336 (2007).
Ertürk, A. et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO.Nature Protocols7, 1983–1995 (2012).
Ke, M.-T., Fujimoto, S. & Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction.Nature Neurosci.16, 1154–1161 (2013).
Kuwajima, T. et al. ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue.Development140, 1364–1368 (2013).
Bohland, J. W. et al. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale.PLoS Comput. Biol.5, e1000334 (2009).
Chung, K. et al. Structural and molecular interrogation of intact biological systems.Nature497, 332–337 (2013).This article reports a chemical engineering method for visualizing and labelling projections in the intact brain.
Chung, K. & Deisseroth, K. CLARITY for mapping the nervous system.Nature Methods10, 508–513 (2013).
Regehr, W. G. & Tank, D. W. Selective fura-2 loading of presynaptic terminals and nerve cell processes by local perfusion in mammalian brain slice.J. Neurosci. Methods37, 111–119 (1991).
Tye, K. M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models.Nature Rev. Neurosci.13, 251–266 (2012).
Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits.Nature468, 277–282 (2010).
Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear.Nature468, 270–276 (2010).
Iwata, J. & LeDoux, J. E. Dissociation of associative and nonassociative concomitants of classical fear conditioning in the freely behaving rat.Behav. Neurosci.102, 66–76 (1988).
Johansen, J. P. et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning.Proc. Natl Acad. Sci. USA107, 12692–12697 (2010).
Kim, S. Y. et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety.Nature496, 219–223 (2013).This study reports the optogenetic decomposition of a behavioural state into component features by projection-targeting-based recruitment of separable anxiety-related features.
Fineberg, N. A. et al. Probing compulsive and impulsive behaviours, from animal models to endophenotypes: a narrative review.Neuropsychopharmacology35, 591–604 (2010).
Ahmari, S. E. et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior.Science340, 1234–1239 (2013).
Burguière, E., Monteiro, P., Feng, G. & Graybiel, A. M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors.Science340, 1243–1246 (2013).
Stopper, C. M., Green, E. B. & Floresco, S. B. Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice.Cereb. Cortex24, 154–162 (2014).
Krishnan, V. & Nestler, E. J. Animal models of depression: molecular perspectives.Curr. Topics Behav. Neurosci.7, 121–147 (2011).
Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders.Nature Neurosci.13, 1161–1169 (2010).
Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour.Nature493, 537–541 (2013).
Warden, M. R. et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge.Nature492, 428–432 (2012).This article describes optogenetic projection-targeting-based recruitment of prefrontal pathways favouring active-coping or passive-coping behavioural patterns relevant to depression.
Voon, V. et al. Dopamine agonists and risk: impulse control disorders in Parkinson's disease.Brain134, 1438–1446 (2011).
Young, J. W., van Enkhuizen, J., Winstanley, C. A. & Geyer, M. A. Increased risk-taking behavior in dopamine transporter knockdown mice: further support for a mouse model of mania.J. Psychopharmacol.25, 934–943 (2011).
Farrell, S. M., Tunbridge, E. M., Braeutigam, S. & Harrison, P. J. COMT Val158 Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition.Biol. Psychiatry71, 538–544 (2012).
Foti, D. & Hajcak, G. Genetic variation in dopamine moderates neural response during reward anticipation and delivery: evidence from event-related potentials.Psychophysiology49, 617–626 (2012).
Witten, I. B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement.Neuron72, 721–733 (2011).
Bewernick, B. H. et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression.Biol. Psychiatry67, 110–116 (2010).
Carter, M. E. & de Lecea, L. Optogenetic investigation of neural circuitsin vivo.Trends Mol. Med.17, 197–206 (2011).
Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons.Nature Neurosci.13, 1526–1533 (2010).
Carter, M. E. et al. Mechanism for hypocretin-mediated sleep-to-wake transitions.Proc. Natl Acad. Sci. USA109, E2635–E2644 (2012).
Domingos, A. I. et al. Leptin regulates the reward value of nutrient.Nature Neurosci.14, 1562–1568 (2011).
Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger.Nature488, 172–177 (2012).
Jennings, J. H., Rizzi, G., Stamatakis, A. M., Ung, R. L. & Stuber, G. D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding.Science341, 1517–1521 (2013).
Tsai, H. C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning.Science324, 1080–1084 (2009).
Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression.Neuropsychopharmacology33, 368–377 (2008).
Grubert, C. et al. Neuropsychological safety of nucleus accumbens deep brain stimulation for major depression: effects of 12-month stimulation.World J. Biol. Psychiatry12, 516–527 (2011).
Stuber, G. D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking.Nature475, 377–380 (2011).Early projection-targeting study in mammalian appetitive and aversive conditioning, demonstrating bidirectional control of the BLA to nucleus accumbens projection using ChR2 and eNpHR3.0.
Britt, J. P. et al. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens.Neuron76, 790–803 (2012).
Lobo, M. K. et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.Science330, 385–390 (2010).
Stefanik, M. T. et al. Optogenetic inhibition of cocaine seeking in rats.Addict. Biol.18, 50–53 (2013).
Pascoli, V., Turiault, M. & Luscher, C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour.Nature481, 71–75 (2012).
Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area.Nature491, 212–217 (2012).This paper describes the behavioural control of appetitive and aversive conditioning by targeting distinct incoming projections (from LDT or LHb) into the VTA.
Stamatakis, A. M. & Stuber, G. D. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance.Nature Neurosci.15, 1105–1107 (2012).
Shabel, S. J., Proulx, C. D., Trias, A., Murphy, R. T. & Malinow, R. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin.Neuron74, 475–481 (2012).
Jennings, J. H. et al. Distinct extended amygdala circuits for divergent motivational states.Nature496, 224–228 (2013).
Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons.Nature493, 532–536 (2013).
Lozano, A. M. & Lipsman, N. Probing and regulating dysfunctional circuits using deep brain stimulation.Neuron77, 406–424 (2013).
Deco, G., Senden, M. & Jirsa, V. How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model.Front. Comput. Neurosci.6, 68 (2012).
Li, X. et al. Using interleaved transcranial magnetic stimulation/functional magnetic resonance imaging (fMRI) and dynamic causal modeling to understand the discrete circuit specific changes of medications: lamotrigine and valproic acid changes in motor or prefrontal effective connectivity.Psychiatry Res.194, 141–148 (2011).
Chen, A. C. Causal interactions between front-parietal central executive and default-mode networks in humans.Proc.Natl Acad. Sci. USA110, 19944–19949 (2013).
Gutman, D. A., Holtzheimer, P. E., Behrens, T. E., Johansen-Berg, H. & Mayberg, H. S. A tractography analysis of two deep brain stimulation white matter targets for depression.Biol. Psychiatry65, 276–282 (2009).
Toga, A. W., Ambach, K., Quinn, B., Hutchin, M. & Burton, J. S. Postmortem anatomy from cryosectioned whole human brain.J. Neurosci. Methods54, 239–252 (1994).
Rauschning, W. Surface cryoplaning. A technique for clinical anatomical correlations.Ups. J. Med. Sci.91, 251–255 (1986).
Amunts, K. et al. BigBrain: an ultrahigh-resolution 3D human brain model.Science340, 1472–1475 (2013).
Cabral, J., Kringelbach, M. L. & Deco, G. Functional graph alterations in schizophrenia: a result from a global anatomic decoupling?Pharmacopsychiatry45 (Suppl 1), 57–64 (2012).
Pinotsis, D. A., Hansen, E., Friston, K. J. & Jirsa, V. K. Anatomical connectivity and the resting state activity of large cortical networks.Neuroimage65, 127–138 (2013).
Sporns, O. The non-random brain: efficiency, economy, and complex dynamics.Front. Comput. Neurosci.5, 5 (2011).
Jirsa, V. K., Sporns, O., Breakspear, M., Deco, G. & McIntosh, A. R. Towards the virtual brain: network modeling of the intact and the damaged brain.Arch. Ital. Biol.148, 189–205 (2010).
Sporns, O. The human connectome: a complex network.Ann. NY Acad. Sci.1224, 109–125 (2011).
Bullmore, E. T. & Bassett, D. S. Brain graphs: graphical models of the human brain connectome.Annu. Rev. Clin. Psychol.7, 113–140 (2011).
Fornito, A. & Bullmore, E. T. Connectomic intermediate phenotypes for psychiatric disorders.Front. Psychiatry3, 32 (2012).
Tritsch, N. X., Ding, J. B. & Sabatini, B. L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA.Nature490, 262–266 (2012).
Fitzsimmons, J., Kubicki, M. & Shenton, M. E. Review of functional and anatomical brain connectivity findings in schizophrenia.Curr. Opin. Psychiatry26, 172–187 (2013).
Lynall, M. E. et al. Functional connectivity and brain networks in schizophrenia.J. Neurosci.30, 9477–9487 (2010).
Maher, B. J. & LoTurco, J. J. Disrupted-in-schizophrenia (DISC1) functions presynaptically at glutamatergic synapses.PLoS ONE7, e34053 (2012).
Felix-Ortiz, A. C. et al. BLA to vHPC inputs modulate anxiety-related behaviors.Neuron79, 658–664 (2013).
Gunaydin, L. et al. Real-time optical measurement of projection activity: dynamics of genetically- and anatomically-defined neuronal afferents predict social behavior in freely moving mice. Program No. 872.04. 2013Neuroscience Meeting Planner. (Society for Neuroscience, 2013).
Stamatakis, A. M. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward.Neuron20, 1039–1053 (2013).
Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics.Cell141, 154–165 (2010).
Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections.Nature Neurosci.10, 663–668 (2007).
Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins.Nature Methods9, 159–172 (2012).
Zalocusky, K. & Deisseroth, K. Optogenetics in the behaving rat: integration of diverse new technologies in a vital animal model.Optogenetics2013, 1–17 (2013).
Acknowledgements
I am deeply indebted to my patients over the years for their insight, perseverance and strength in working to convey the most complex and nearly inarticulatable inner thought processes and feelings associated with severe psychiatric disease. I am also grateful to my entire laboratory for support, as well as to V. Sohal, A. Schatzberg, H. Mayberg, R. Malenka, A. Etkin, L. Grosenick, A. Kreitzer, T. Insel, M. Warden, M. Zelikowsky and E. Ferenczi for comments and discussions over the years. K.D. has been supported by the Wiegers Family Fund, NARSAD, NIMH, NIDA, DARPA, the Keck Foundation, the McKnight Foundation, the Yu, Snyder and Woo Foundations, and the Gatsby Charitable Foundation.
Author information
Authors and Affiliations
Department of Bioengineering, Stanford University, Stanford, 94305, California, USA
Karl Deisseroth
Department of Psychiatry, Stanford University, Stanford, 94305, California, USA
Karl Deisseroth
Howard Hughes Medical Institute, Stanford University, Stanford, 94305, California, USA
Karl Deisseroth
- Karl Deisseroth
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toKarl Deisseroth.
Ethics declarations
Competing interests
The author declares no competing financial interests.
Additional information
Reprints and permissions information is available atwww.nature.com/reprints.
Rights and permissions
About this article
Cite this article
Deisseroth, K. Circuit dynamics of adaptive and maladaptive behaviour.Nature505, 309–317 (2014). https://doi.org/10.1038/nature12982
Received:
Accepted:
Published:
Issue Date:
This article is cited by
Genetically targeted chemical assembly
- Anqi Zhang
- Yuanwen Jiang
- Karl Deisseroth
Nature Reviews Bioengineering (2023)
Update on GPCR-based targets for the development of novel antidepressants
- Ioannis Mantas
- Marcus Saarinen
- Per Svenningsson
Molecular Psychiatry (2022)
Optogenetic Studies of the Pathophysiological Mechanisms and Treatment of Depression
- N. N. Dygalo
- G. T. Shishkina
Neuroscience and Behavioral Physiology (2019)
Controllability and Its Applications to Biological Networks
- Lin Wu
- Min Li
- Fang-Xiang Wu
Journal of Computer Science and Technology (2019)
Stably maintained microtubules protect dopamine neurons and alleviate depression-like behavior after intracerebral hemorrhage
- Yang Yang
- Kaiyuan Zhang
- Liang Tan
Scientific Reports (2018)