Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Onset of deglacial warming in West Antarctica driven by local orbital forcing

Naturevolume 500pages440–444 (2013)Cite this article

Subjects

Abstract

The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate1,2. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago3,4. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently2,5. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere6 associated with an abrupt decrease in Atlantic meridional overturning circulation7. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antarctic Isotope Records.
Figure 2: Timing of rapid change in Antarctica.
Figure 3: Global records of deglaciation.
Figure 4: Antarctic δ18O response to sea-ice decrease.

Similar content being viewed by others

References

  1. Huybers, P. & Denton, G. Antarctic temperature at orbital timescales controlled by local summer duration.Nature Geosci.1, 787–792 (2008)

    Article ADS CAS  Google Scholar 

  2. Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years.Nature448, 912–916 (2007)

    Article ADS CAS  Google Scholar 

  3. Clark, P. U., Pisias, N. G., Stocker, T. F. & Weaver, A. J. The role of the thermohaline circulation in abrupt climate change.Nature415, 863–869 (2002)

    Article ADS CAS  Google Scholar 

  4. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation.Nature484, 49–54 (2012)

    Article ADS CAS  Google Scholar 

  5. McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes.Nature428, 834–837 (2004)

    Article ADS CAS  Google Scholar 

  6. EPICA community members. Eight glacial cycles from an Antarctic ice core.Nature429, 623–628 (2004)

  7. EPICA. Community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica.Nature444, 195–198 (2006)

  8. Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming.Science339, 1060–1063 (2013)

    Article ADS CAS  Google Scholar 

  9. Nicolas, J. P. & Bromwich, D. H. Climate of West Antarctica and influence of marine air intrusions.J. Clim.24, 49–67 (2011)

    Article ADS  Google Scholar 

  10. Noone, D. & Simmonds, I. Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation.J. Geophys. Res.109, D07105 (2004)

    Article ADS  Google Scholar 

  11. Steig, E. J. et al. inThe West Antarctic Ice Sheet: Behavior and Environment Vol. 77 (eds Alley, R. & Bindschadler, R. ) 75–90 (American Geophysical Union, 2001)

  12. Svensson, A. et al. A 60,000 year Greenland stratigraphic ice core chronology.Clim. Past4, 47–57 (2008)

    Article  Google Scholar 

  13. Steig, E. J. et al. Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years.Nature Geosci.6, 372–375 (2013)

    Article ADS CAS  Google Scholar 

  14. Stenni, B. et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation.Nature Geosci.4, 46–49 (2011)

    Article ADS CAS  Google Scholar 

  15. Hammer, C. U., Clausen, H. B. & Langway, C. C. 50,000 years of recorded global volcanism.Clim. Change35, 1–15 (1997)

    Article CAS  Google Scholar 

  16. Schwander, J. et al. A tentative chronology for the EPICA Dome Concordia ice core.Geophys. Res. Lett.28, 4243–4246 (2001)

    Article ADS  Google Scholar 

  17. Wolff, E. W., Rankin, A. M. & Rothlisberger, R. An ice core indicator of Antarctic sea ice production?Geophys. Res. Lett.30, 2158 (2003)

    Article ADS  Google Scholar 

  18. Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift.Nature Geosci.5, 872–875 (2012)

    Article ADS CAS  Google Scholar 

  19. Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 .Science323, 1443–1448 (2009)

    Article ADS CAS  Google Scholar 

  20. Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination.Science291, 112–114 (2001)

    Article ADS CAS  Google Scholar 

  21. Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages.Paleoceanography21, PA2005 (2006)

    Article ADS  Google Scholar 

  22. Lee, S. Y., Chiang, J. C. H., Matsumoto, K. & Tokos, K. S. Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: modeling perspective and paleoceanographic implications.Paleoceanography26, PA1214 (2011)

    Article ADS  Google Scholar 

  23. Collins, L. G., Pike, J., Allen, C. S. & Hodgson, D. A. High-resolution reconstruction of southwest Atlantic sea-ice and its role in the carbon cycle during marine isotope stages 3 and 2.Paleoceanography27, PA3217 (2012)

    Article ADS  Google Scholar 

  24. Roeckner, E. et al.The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate. Report No. 218 90 (Max-Planck-Institut für Meteorologie, 1996)

  25. Braconnot, P. et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features.Clim. Past3, 261–277 (2007)

    Article  Google Scholar 

  26. Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing.Science313, 508–511 (2006)

    Article ADS CAS  Google Scholar 

  27. Pedro, J. B. et al. The last deglaciation: timing the bipolar seesaw.Clim. Past7, 671–683 (2011)

    Article  Google Scholar 

  28. Brook, E. J. et al. Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period.Quat. Sci. Rev.24, 1333–1343 (2005)

    Article ADS  Google Scholar 

  29. Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period.Science291, 109–112 (2001)

    Article ADS CAS  Google Scholar 

  30. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica.Nature399, 429–436 (1999)

    Article ADS CAS  Google Scholar 

  31. Lemieux-Dudon, B. et al. Consistent dating for Antarctic and Greenland ice cores.Quat. Sci. Rev.29, 8–20 (2010)

    Article ADS  Google Scholar 

  32. Crosson, E. R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor.Appl. Phys. B92, 403–408 (2008)

    Article ADS CAS  Google Scholar 

  33. Dahl-Jensen, D., Gundestrup, N., Gogineni, S. P. & Miller, H. Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations.Ann. Glaciol.37, 207–212 (2003)

    Article ADS  Google Scholar 

  34. Dansgaard, W. & Johnsen, S. J. A flow model and a time scale for the ice core from Camp Century, Greenland.J. Glaciol.8, 215–223 (1969)

    Article ADS  Google Scholar 

  35. Sigl, M. et al. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years.J. Geophys. Res.18, 1151–1169 (2013)

    Google Scholar 

  36. Herron, M. M. & Langway, C. C. Firn densification: an empirical model.J. Glaciol.25, 373–385 (1980)

    Article ADS  Google Scholar 

  37. Mitchell, L. E., Brook, E. J., Sowers, T., McConnell, J. R. & Taylor, K. Multidecadal variability of atmospheric methane, 1000-1800 CE.J. Geophys. Res.116, G02007 (2011)

    Article ADS  Google Scholar 

  38. Huber, C. et al. Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements.Earth Planet. Sci. Lett.243, 61–73 (2006)

    Article ADS CAS  Google Scholar 

  39. Kobashi, T., Severinghaus, J. P., Brook, E. J., Barnola, J. M. & Grachev, A. M. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice.Quat. Sci. Rev.26, 1212–1222 (2007)

    Article ADS  Google Scholar 

  40. Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice.Nature391, 141–146 (1998)

    Article ADS CAS  Google Scholar 

  41. Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey.Geophys. Res. Lett.36, L19707 (2009)

    Article ADS  Google Scholar 

  42. Cheng, H. et al. Ice age terminations.Science326, 248–252 (2009)

    Article ADS CAS  Google Scholar 

  43. Ruth, U. et al. “EDML1”: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150,000 years.Clim. Past3, 475–484 (2007)

    Article  Google Scholar 

  44. Bisiaux, M. M. et al. Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850-2000 AD.Atmos. Chem. Phys.12, 4107–4115 (2012)

    Article ADS CAS  Google Scholar 

  45. McConnell, J. R. Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry.Environ. Sci. Technol.36, 7–11 (2002)

    Article ADS CAS  Google Scholar 

  46. McConnell, J. R. et al. 20th-century industrial black carbon emissions altered arctic climate forcing.Science317, 1381–1384 (2007)

    Article ADS CAS  Google Scholar 

  47. Pasteris, D. R., McConnell, J. R. & Edwards, R. High-resolution, continuous method for measurement of acidity in ice cores.Environ. Sci. Technol.46, 1659–1666 (2012)

    Article ADS CAS  Google Scholar 

  48. Röthlisberger, R., Crosta, X., Abram, N. J., Armand, L. & Wolff, E. W. Potential and limitations of marine and ice core sea ice proxies: an example from the Indian Ocean sector.Quat. Sci. Rev.29, 296–302 (2010)

    Article ADS  Google Scholar 

  49. Alley, R. B. et al. Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates.J. Glaciol.41, 503–514 (1995)

    Article ADS  Google Scholar 

  50. Dlugokencky, E. J. et al. Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale.J. Geophys. Res.110, D18306 (2005)

    Article ADS  Google Scholar 

  51. Wilcoxon, F. Individual comparisons by ranking methods.Biom. Bull.1, 80–83 (1945)

    Article  Google Scholar 

  52. Mauget, S. A. Intra- to multidecadal climate variability over the continental United States: 1932-99.J. Clim.16, 2215–2231 (2003)

    Article ADS  Google Scholar 

  53. Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Blade, I. The effective number of spatial degrees of freedom of a time-varying field.J. Clim.12, 1990–2009 (1999)

    Article ADS  Google Scholar 

  54. Hoffmann, G., Werner, M. & Heimann, M. Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years.J. Geophys. Res.103, 16871–16896 (1998)

    Article ADS CAS  Google Scholar 

  55. Ding, Q. H., Steig, E. J., Battisti, D. S. & Kuttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming.Nature Geosci.4, 398–403 (2011)

    Article ADS CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Science Foundation (NSF). The authors appreciate the support of the WAIS Divide Science Coordination Office (M. Twickler and J. Souney) for the collection and distribution of the WAIS Divide ice core; Ice Drilling and Design and Operations (K. Dahnert) for drilling; the National Ice Core Laboratory (B. Bencivengo) for curating the core; Raytheon Polar Services (M. Kippenhan) for logistics support in Antarctica; and the 109th New York Air National Guard for airlift in Antarctica. We also thank C. Buizert and S. Marcott for discussions. The following individual NSF grants supported this work: 0944197 (E.D.W., H. Conway); 1043092, 0537930 (E.J.S.); 0944348, 0944191, 0440817, 0440819, 0230396 (K.C.T.); 0538427, 0839093 (J.R.M.); 1043518 (E.J.B.); 1043500 (T.S.); 05379853, 1043167 (J.W.C.W.); 1043528, 0539578 (R.B.A.); 0539232 (K.M.C., G.D.C.); 1103403 (R.L.E., H. Conway); 0739780 (R.E.); 0637211 (G.H.); 0538553, 0839066 (J.C.-D.), 0538657, 1043421 (J.P.S.); 1043313 (M.K.S.); 0801490 (G.J.W). Other support came from a NASA NESSF award (T.J.F.), the USGS Climate and Land Use Change Program (G.D.C., J.J.F.), the National Natural Science Foundation of China (41230524 to H. Cheng) and the Singapore National Research Foundation (NRFF2011-08 to X.W.).

Author information

Author notes
  1. Affiliations for participants:

Authors and Affiliations

  1. Department of Earth and Space Sciences, University of Washington, Seattle, 98195, Washington, USA

    T. J. Fudge, Eric J. Steig, Bradley R. Markle, Spruce W. Schoenemann, Qinghua Ding, Howard Conway, Peter Neff, Andrew J. Schauer & Edwin D. Waddington

  2. Quaternary Research Center, University of Washington, Seattle, 98195, Washington, USA

    Eric J. Steig & Qinghua Ding

  3. Desert Research Institute, Nevada System of Higher Education, Reno, 89512, Nevada, USA

    Kendrick C. Taylor, Joseph R. McConnell, Olivia J. Maselli, Kenneth C. McGwire & Michael Sigl

  4. College of Earth, Ocean and Atmospheric Sciences Oregon State University, Corvallis, 97331, Oregon, USA

    Edward J. Brook, Jon S. Edwards, James E. Lee & Logan E. Mitchell

  5. Earth and Environmental Systems Institute, Pennsylvania State University, University Park, 16802, Pennsylvania, USA

    Todd Sowers, Richard B. Alley, John M. Fegyveresi & Donald E. Voigt

  6. Department of Geological Sciences and Department of Environmental Studies, Boulder, 80309, Colorado, USA

    James W. C. White

  7. INSTAAR, University of Colorado, Boulder, 80309, Colorado, USA

    James W. C. White & Bruce H. Vaughn

  8. Department of Geosciences, Pennsylvania State University, University Park, 16802, Pennsylvania, USA

    Richard B. Alley, John M. Fegyveresi & Donald E. Voigt

  9. Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, 710049, China

    Hai Cheng

  10. Department of Earth Sciences, University of Minnesota, Minneapolis, 55455, Minnesota, USA

    Hai Cheng & R. Lawrence Edwards

  11. US Geological Survey, Geosciences and Environmental Change Science Center, Lakewood, 80225, Colorado, USA

    Gary D. Clow

  12. Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota 57007, USA.,

    Jihong Cole-Dai & David Ferris

  13. Department of Geography, University of California-Berkeley, Berkeley, 94720, USA

    Kurt M. Cuffey

  14. Department of Imaging and Applied Physics, Curtin University, Perth, 6102, Western Australia, Australia

    Ross Edwards

  15. US Geological Survey, Denver, 80225, Colorado, USA

    Joan J. Fitzpatrick

  16. Ice Drilling Design and Operations, Space Science Engineering Center, University of Wisconsin-Madison, Madison, 53706, Wisconsin, USA

    Jay Johnson & Nicolai Mortensen

  17. US Geologic Survey, National Ice Core Laboratory, Denver, 80225, Colorado, USA

    Geoffrey Hargreaves

  18. EMECH Designs, Brooklyn, 53521, Wisconsin, USA

    William Mason

  19. Antarctic Research Centre, Victoria University of Wellington, Wellington, 6012, New Zealand

    Peter Neff

  20. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, 92037, California, USA

    Anais J. Orsi & Jeffrey P. Severinghaus

  21. Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark.,

    Trevor J. Popp

  22. Department of Geology and Physics, Lake Superior State University, Sault Ste Marie, Michigan 49783, USA.,

    Matthew K. Spencer

  23. Earth Observatory of Singapore, Nanyang Technological University, Singapore 639798.,

    Xianfeng Wang

  24. Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.,

    Gifford J. Wong

Consortia

WAIS Divide Project Members

  • T. J. Fudge
  • , Eric J. Steig
  • , Bradley R. Markle
  • , Spruce W. Schoenemann
  • , Qinghua Ding
  • , Kendrick C. Taylor
  • , Joseph R. McConnell
  • , Edward J. Brook
  • , Todd Sowers
  • , James W. C. White
  • , Richard B. Alley
  • , Hai Cheng
  • , Gary D. Clow
  • , Jihong Cole-Dai
  • , Howard Conway
  • , Kurt M. Cuffey
  • , Jon S. Edwards
  • , R. Lawrence Edwards
  • , Ross Edwards
  • , John M. Fegyveresi
  • , David Ferris
  • , Joan J. Fitzpatrick
  • , Jay Johnson
  • , Geoffrey Hargreaves
  • , James E. Lee
  • , Olivia J. Maselli
  • , William Mason
  • , Kenneth C. McGwire
  • , Logan E. Mitchell
  • , Nicolai Mortensen
  • , Peter Neff
  • , Anais J. Orsi
  • , Trevor J. Popp
  • , Andrew J. Schauer
  • , Jeffrey P. Severinghaus
  • , Michael Sigl
  • , Matthew K. Spencer
  • , Bruce H. Vaughn
  • , Donald E. Voigt
  • , Edwin D. Waddington
  • , Xianfeng Wang
  •  & Gifford J. Wong

Contributions

The manuscript was written by T.J.F., E.J.S. and B.R.M. K.C.T. organized the WAIS Divide Project. T.J.F., K.C.T and T.J.P. made the electrical measurements and developed the electrical timescale with K.C.M. E.J.S., J.W.C.W., A.J.S., P.N., B.H.V. and S.W.S. measured the stable-isotope record. J.R.M., M.S., O.J.M. and R.E. developed the chemistry timescale and measured Na. E.J.B., T.S., L.E.M., J.S.E. and J.E.L. made the methane measurements. G.D.C. and K.M.C. measured the borehole temperature profile. J.C.-D. and D.F. provided an independent timescale for the brittle ice. Q.D., S.W.S. and E.J.S. performed the climate modelling. T.J.F., E.D.W., H. Conway and K.M.C. performed the ice-flow modelling to determine the accumulation rate. H. Cheng, R.L.E., X.W., J.P.S. and T.J.F. made comparisons with the Hulu cave timescale. M.K.S., J.J.F., J.M.F., D.E.V. and R.B.A. examined the physical properties of the core. W.M., J.J. and N.M. designed the drill. G.H. designed core-processing techniques. A.J.O., B.H.V., D.E.V., K.C.T., T.J.P. and G.J.W. led collection and processing of the core in the field.

Corresponding author

Correspondence toT. J. Fudge.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Additional information

Lists of participants and their affiliations appear at the end of the paper.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary References and Supplementary Figures 1-10. (PDF 1916 kb)

Supplementary Data

This file contains the data and model output used in figures 1-4. (XLSX 2222 kb)

Rights and permissions

About this article

Cite this article

WAIS Divide Project Members. Onset of deglacial warming in West Antarctica driven by local orbital forcing.Nature500, 440–444 (2013). https://doi.org/10.1038/nature12376

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

Local conditions drive Antarctic deglaciations

There are two main theories vying to explain Antarctic climate changes at the time of Northern Hemisphere deglaciations. One holds that changes in ocean circulation — driven by changes in Northern Hemisphere insolation — govern Southern Hemisphere climate. The other argues for a dominant influence from local changes in insolation. It has been difficult to differentiate between the two because of the low resolution of many ice-core records. Now Tyler Fudge and colleagues present an annually resolved ice-core record from the West Antarctic Ice Sheet Divide site and reveal an increase in snowfall about 18,000 years ago, preceded by a distinct warming 20,000 years ago. Changes in local insolation and nearby sea ice appear to be the cause of the early warming, suggesting that East and West Antarctica may respond to different deglacial forcings.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp