Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Deterministic quantum teleportation of photonic quantum bits by a hybrid technique

Naturevolume 500pages315–318 (2013)Cite this article

Subjects

Abstract

Quantum teleportation1 allows for the transfer of arbitrary unknown quantum states from a sender to a spatially distant receiver, provided that the two parties share an entangled state and can communicate classically. It is the essence of many sophisticated protocols for quantum communication and computation2,3,4,5. Photons are an optimal choice for carrying information in the form of ‘flying qubits’, but the teleportation of photonic quantum bits6,7,8,9,10,11 (qubits) has been limited by experimental inefficiencies and restrictions. Main disadvantages include the fundamentally probabilistic nature of linear-optics Bell measurements12, as well as the need either to destroy the teleported qubit or attenuate the input qubit when the detectors do not resolve photon numbers13. Here we experimentally realize fully deterministic quantum teleportation of photonic qubits without post-selection. The key step is to make use of a hybrid technique involving continuous-variable teleportation14,15,16 of a discrete-variable, photonic qubit. When the receiver’s feedforward gain is optimally tuned, the continuous-variable teleporter acts as a pure loss channel17,18, and the input dual-rail-encoded qubit, based on a single photon, represents a quantum error detection code against photon loss19 and hence remains completely intact for most teleportation events. This allows for a faithful qubit transfer even with imperfect continuous-variable entangled states: for four qubits the overall transfer fidelities range from 0.79 to 0.82 and all of them exceed the classical limit of teleportation. Furthermore, even for a relatively low level of the entanglement, qubits are teleported much more efficiently than in previous experiments, albeit post-selectively (taking into account only the qubit subspaces), and with a fidelity comparable to the previously reported values.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Experimental density matrices.
Figure 3: Experimental results of teleportation including gain tuning.

Similar content being viewed by others

Article22 December 2022

References

  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels.Phys. Rev. Lett.70, 1895–1899 (1993)

    Article ADS MathSciNet CAS  Google Scholar 

  2. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication.Phys. Rev. Lett.81, 5932–5935 (1998)

    Article ADS CAS  Google Scholar 

  3. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations.Nature402, 390–393 (1999)

    Article ADS CAS  Google Scholar 

  4. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics.Nature409, 46–52 (2001)

    Article ADS CAS  Google Scholar 

  5. Raussendorf, R. & Briegel, H. J. A one-way quantum computer.Phys. Rev. Lett.86, 5188–5191 (2001)

    Article ADS CAS  Google Scholar 

  6. Bouwmeester, D. et al. Experimental quantum teleportation.Nature390, 575–579 (1997)

    Article ADS CAS  Google Scholar 

  7. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical Einstein-Podolsky-Rosen channels.Phys. Rev. Lett.80, 1121–1125 (1998)

    Article ADS MathSciNet CAS  Google Scholar 

  8. Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of polarization state with a complete Bell state measurement.Phys. Rev. Lett.86, 1370–1373 (2001)

    Article ADS CAS  Google Scholar 

  9. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths.Nature421, 509–513 (2003)

    Article ADS CAS  Google Scholar 

  10. Pan, J.-W., Gasparoni, S., Aspelmeyer, M., Jennewein, T. & Zeilinger, A. Experimental realization of freely propagating teleported qubits.Nature421, 721–725 (2003)

    Article ADS CAS  Google Scholar 

  11. Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward.Nature489, 269–273 (2012)

    Article ADS CAS  Google Scholar 

  12. Lütkenhaus, N., Calsamiglia, J. & Suominen, K.-A. Bell measurements for teleportation.Phys. Rev. A59, 3295–3300 (1999)

    Article ADS MathSciNet  Google Scholar 

  13. Pan, J.-. et al. Multiphoton entanglement and interferometry.Rev. Mod. Phys.84, 777–838 (2012)

    Article ADS  Google Scholar 

  14. Vaidman, L. Teleportation of quantum states.Phys. Rev. A49, 1473–1476 (1994)

    Article ADS CAS  Google Scholar 

  15. Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables.Phys. Rev. Lett.80, 869–872 (1998)

    Article ADS CAS  Google Scholar 

  16. Furusawa, A. et al. Unconditional quantum teleportation.Science282, 706–709 (1998)

    Article ADS CAS  Google Scholar 

  17. Hofmann, H. F., Ide, T., Kobayashi, T. & Furusawa, A. Information losses in continuous-variable quantum teleportation.Phys. Rev. A64, 040301(R) (2001)

    Article ADS  Google Scholar 

  18. Polkinghorne, R. E. S. & Ralph, T. C. Continuous variable entanglement swapping.Phys. Rev. Lett.83, 2095–2099 (1999)

    Article ADS MathSciNet CAS  Google Scholar 

  19. Nielsen, M. A. & Chuang, I. L.Quantum Computation and Quantum Information 380–386 (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  20. Braunstein, S. L. & Kimble, H. J.A posteriori teleportation.Nature394, 840–841 (1998)

    Article ADS CAS  Google Scholar 

  21. Yonezawa, H., Braunstein, S. L. & Furusawa, A. Experimental demonstration of quantum teleportation of broadband squeezing.Phys. Rev. Lett.99, 110503 (2007)

    Article ADS  Google Scholar 

  22. Ide, T., Hofmann, H. F., Kobayashi, T. & Furusawa, A. Continuous-variable teleportation of single-photon states.Phys. Rev. A65, 012313 (2001)

    Article ADS  Google Scholar 

  23. Lee, N. et al. Teleportation of nonclassical wave packets of light.Science332, 330–333 (2011)

    Article ADS CAS  Google Scholar 

  24. Takeda, S. et al. Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing.Phys. Rev. A87, 043803 (2013)

    Article ADS  Google Scholar 

  25. Bowen, W. P. et al. Experimental investigation of continuous-variable quantum teleportation.Phys. Rev. A67, 032302 (2003)

    Article ADS  Google Scholar 

  26. Jia, X. et al. Experimental demonstration of unconditional entanglement swapping for continuous variables.Phys. Rev. Lett.93, 250503 (2004)

    Article ADS  Google Scholar 

  27. Mišta, L., Jr, Filip, R. & Furusawa, A. Continuous-variable teleportation of a negative Wigner function.Phys. Rev. A82, 012322 (2010)

    Article ADS  Google Scholar 

  28. Jozsa, R. Fidelity for mixed quantum states.J. Mod. Opt.41, 2315–2323 (1994)

    Article ADS MathSciNet  Google Scholar 

  29. Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles.Phys. Rev. Lett.74, 1259–1263 (1995)

    Article ADS MathSciNet CAS  Google Scholar 

  30. Zavatta, A., D’Angelo, M., Parigi, V. & Bellini, M. Remote preparation of arbitrary time-encoded single-photon ebits.Phys. Rev. Lett.96, 020502 (2006)

    Article ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by PDIS, GIA, G-COE, APSA and FIRST, commissioned by MEXT (Japan); by the SCOPE programme commissioned by MIC (Japan); and by ASCR-JSPS. S.T. and M.F. acknowledge financial support from ALPS. We thank L. Mišta Jr, H. Yonezawa and J. Kimble for comments.

Author information

Authors and Affiliations

  1. Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan,

    Shuntaro Takeda, Takahiro Mizuta, Maria Fuwa & Akira Furusawa

  2. Institute of Physics, Johannes-Gutenberg Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany,

    Peter van Loock

Authors
  1. Shuntaro Takeda
  2. Takahiro Mizuta
  3. Maria Fuwa
  4. Peter van Loock
  5. Akira Furusawa

Contributions

A.F. planned and supervised the project. P.v.L. and S.T. theoretically defined the scientific goals. S.T. and T.M. designed and performed the experiment, and acquired the data. S.T. and M.F. developed the electronic devices. S.T., T.M. and M.F. analysed the data. S.T. and P.v.L. wrote the manuscript with assistance from all other co-authors.

Corresponding author

Correspondence toAkira Furusawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Data, Supplementary References, Supplementary Figures 1-2 and Supplementary Tables 1-2. (PDF 1994 kb)

Rights and permissions

About this article

Cite this article

Takeda, S., Mizuta, T., Fuwa, M.et al. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique.Nature500, 315–318 (2013). https://doi.org/10.1038/nature12366

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Efficient teleportation on demand

Quantum teleportation is one of the most important elementary protocols in quantum information processing. Previous studies have achieved quantum teleportation, but usually randomly and at low rates. Two groups reporting in this issue ofNature have used contrasting methods to achieve the same aim —more efficient quantum teleportation. Takedaet al. describe the experimental realization of fully deterministic, unconditional quantum teleportation of photonic qubits — an optimum choice for information carrying — with overall transfer fidelities exceeding the classical limit of teleportation. The technique may facilitate the development of large-scale optical quantum networks. Steffenet al. report quantum teleportation in a solid-state system, achieving deterministic quantum teleportation in a chip-based superconducting circuit architecture. They teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10,000 per second, exceeding other reported implementations. Transmission loss in superconducting waveguides is low, so this system should be scalable to significantly larger distances, a step towards quantum communication at microwave frequencies.

Associated content

Reliable teleportation

  • Timothy C. Ralph
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp