Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

The oldest known primate skeleton and early haplorhine evolution

Naturevolume 498pages60–64 (2013)Cite this article

Subjects

Abstract

Reconstructing the earliest phases of primate evolution has been impeded by gaps in the fossil record, so that disagreements persist regarding the palaeobiology and phylogenetic relationships of the earliest primates. Here we report the discovery of a nearly complete and partly articulated skeleton of a primitive haplorhine primate from the early Eocene of China, about 55 million years ago, the oldest fossil primate of this quality ever recovered. Coupled with detailed morphological examination using propagation phase contrast X-ray synchrotron microtomography, our phylogenetic analysis based on total available evidence indicates that this fossil is the most basal known member of the tarsiiform clade. In addition to providing further support for an early dichotomy between the strepsirrhine and haplorhine clades, this new primate further constrains the age of divergence between tarsiiforms and anthropoids. It also strengthens the hypothesis that the earliest primates were probably diurnal, arboreal and primarily insectivorous mammals the size of modern pygmy mouse lemurs.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional reconstruction of the type specimen (IVPP V18618) ofArchicebus achilles.
Figure 2: The head region ofArchicebus achilles.
Figure 3: The foot region ofArchicebus achilles.
Figure 4: Summary phylogeny of 157 mammals.

Similar content being viewed by others

Accession codes

Data deposits

ZooBank accessions: urn:lsid:zoobank.org:act:884CBACC-B602-471A-A7B0-E2AF092BA6F8 (Archicebidae fam. nov.); urn:lsid:zoobank.org:act: 163DE8EB-D691-49E4-A211-8ECF117756BD (Archicebus gen. nov.); urn:lsid:zoobank.org:act:105EE748-38DE-4709-A7D0-44FE0E3E2813 (Archicebus achilles sp. nov.).

References

  1. Wang, Y. et al. Early Paleogene stratigraphic sequences, mammalian evolution and its response to environmental changes in Erlian Basin, Inner Mongolia, China.Sci. China Earth Sci.53, 1918–1926 (2010)

    Article  Google Scholar 

  2. Ni, X., Wang, Y., Hu, Y. & Li, C. A euprimate skull from the early Eocene of China.Nature427, 65–68 (2004)

    Article ADS CAS  Google Scholar 

  3. Kay, R. F. & Kirk, E. C. Osteological evidence for the evolution of activity pattern and visual acuity in primates.Am. J. Phys. Anthropol.113, 235–262 (2000)

    Article CAS  Google Scholar 

  4. Rossie, J. B., Ni, X. & Beard, K. C. Cranial remains of an Eocene tarsier.Proc. Natl Acad. Sci. USA103, 4381–4385 (2006)

    Article ADS CAS  Google Scholar 

  5. Rose, K. D., Chester, S. G. B., Dunn, R. H., Boyer, D. M. & Bloch, J. I. New fossils of the oldest North American euprimateTeilhardina brandti (Omomyidae) from the Paleocene–Eocene thermal maximum.Am. J. Phys. Anthropol.146, 281–305 (2011)

    Article  Google Scholar 

  6. Gingerich, P. D. Dental variation in early EoceneTeilhardinal belgica, with notes on the anterior dentition of some early tarsiiformes.Folia Primatol.28, 144–153 (1977)

    Article CAS  Google Scholar 

  7. Beard, K. C. & Wang, J. The eosimiid primates (Anthropoidea) of the Heti Formation, Yuanqu Basin, Shanxi and Henan Provinces, People’s Republic of China.J. Hum. Evol.46, 401–432 (2004)

    Article  Google Scholar 

  8. Beard, K. C., Tong, Y., Dawson, M. R., Wang, J. & Huang, X. Earliest complete dentition of an anthropoid primate from the late middle Eocene of Shanxi Province, China.Science272, 82–85 (1996)

    Article ADS CAS  Google Scholar 

  9. Szalay, F. S. & Delson, E.Evolutionary History of the Primates (Academic, 1979)

  10. Godinot, M. A summary of adapiform systematics and phylogeny.Folia Primatol.69, 218–249 (1998)

    Article  Google Scholar 

  11. Rose, K. D. et al. Early Eocene primates from Gujarat, India.J. Hum. Evol.56, 366–404 (2009)

    Article  Google Scholar 

  12. Beard, K. C. The oldest North American primate and mammalian biogeography during the Paleocene-Eocene Thermal Maximum.Proc. Natl Acad. Sci. USA105, 3815–3818 (2008)

    Article ADS CAS  Google Scholar 

  13. Dagosto, M. inPostcranial Adaptation in Nonhuman Primates (ed. Gebo, D. L. ) 150–174 (Northern Illinois Univ. Press, 1993)

  14. Dagosto, M., Gebo, D. L. & Beard, K. C. Revision of the Wind River faunas, early Eocene of central Wyoming. Part 14. Postcranium ofShoshonius cooperi (Mammalia, Primates).Annals Carnegie Museum68, 175–211 (1999)

    Google Scholar 

  15. Fleagle, J. G. & Simons, E. L. The humerus ofAegyptopithecus zeuxis: a primitive anthropoid.Am. J. Phys. Anthropol.59, 175–193 (1982)

    Article CAS  Google Scholar 

  16. Fleagle, J. G. & Simons, E. L. Limb skeleton and locomotor adaptations ofApidium phiomense, an Oligocene anthropoid from Egypt.Am. J. Phys. Anthropol.97, 235–289 (1995)

    Article CAS  Google Scholar 

  17. Dagosto, M. & Gebo, D. L. inAnthropoid Origins (eds Fleagle, J. G. & Kay, R. K. ) 567–593 (Plenum, 1994)

  18. Gebo, D. L., Simons, E. L., Rasmussen, D. T. & Dagosto, M. inAnthropoid Origins (eds Fleagle, J. G. & Kay, R. F. ) 203–233 (Plenum, 1994)

  19. Szalay, F. S. & Dagosto, M. Locomotor adaptations as reflected on the humerus of Paleogene primates.Folia Primatol.34, 1–45 (1980)

    Article CAS  Google Scholar 

  20. Gregory, W. K. On the structure and relations ofNotharctus, an American Eocene primate.Memoirs of the American Museum of Natural History series 3,. 49–243 (1920)

  21. Rose, K. D. & Walker, A. The skeleton of early EoceneCantius, oldest lemuriform primate.Am. J. Phys. Anthropol.66, 73–89 (1985)

    Article CAS  Google Scholar 

  22. Anemone, R. L. & Covert, H. H. New skeletal remains ofOmomys (Primates, Omomyidae): functional morphology of the hindlimb and locomotor behavior of a middle Eocene primate.J. Hum. Evol.38, 607–633 (2000)

    Article CAS  Google Scholar 

  23. Gebo, D. L., Dagosto, M., Beard, K. C. & Ni, X. New primate hind limb elements from the middle Eocene of China.J. Hum. Evol.55, 999–1014 (2008)

    Article  Google Scholar 

  24. White, J. L. & Gebo, D. L. Unique proximal tibial morphology in strepsirrhine primates.Am. J. Primatol.64, 293–308 (2004)

    Article  Google Scholar 

  25. Dagosto, M., Gebo, D. L., Ni, X., Qi, T. & Beard, K. C. inMammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay (eds Sargis, E. J. & Dagosto, M. ) 315–324 (Springer, 2008)

  26. Jouffroy, F. K. & Lessertisseur, J. inEnvironment, Behavior, and Morphology: Dynamic Interactions in Primates (eds Morbeck, M. E., Preuschoft, H. & Gomberg, N. ) 143–181 (Gustav Fisher, 1979)

  27. Covert, H. H. & Hamrick, M. W. Description of new skeletal remains of the early Eocene anaptomorphine primateAbsarokius (Omomyidae) and a discussion about its adaptive profile.J. Hum. Evol.25, 351–362 (1993)

    Article  Google Scholar 

  28. Gebo, D. L., Dagosto, M., Beard, K. C. & Qi, T. Middle Eocene primate tarsals from China: implications for Haplorhine evolution.Am. J. Phys. Anthropol.116, 83–107 (2001)

    Article CAS  Google Scholar 

  29. Gebo, D. L., Smith, T. & Dagosto, M. New postcranial elements for the earliest Eocene fossil primateTeilhardina belgica.J. Hum. Evol.63, 205–218 (2012)

    Article  Google Scholar 

  30. Gebo, D. L., Dagosto, M., Beard, K. C., Qi, T. & Wang, J. The oldest known anthropoid postcranial fossils and the early evolution of higher primates.Nature404, 276–278 (2000)

    Article ADS CAS  Google Scholar 

  31. Dagosto, M. Implications of postcranial evidence for the origin of euprimates.J. Hum. Evol.17, 35–56 (1988)

    Article  Google Scholar 

  32. Gebo, D. L., Dagosto, M., Beard, K. C., Ni, X. & Qi, T. inElwyn Simons: A Search for Origins Developments in Primatology: Progress and Prospects (eds Fleagle, J. G. & Gilbert, C. C. ) 229–242 (Springer, 2008)

  33. Kay, R. F., Ross, C. F. & Williams, B. A. Anthropoid origins.Science275, 797–804 (1997)

    Article CAS  Google Scholar 

  34. Ni, X. et al. A new tarkadectine primate from the Eocene of Inner Mongolia, China: phylogenetic and biogeographic implications.Proc. R. Soc. B277, 247–256 (2010)

    Article  Google Scholar 

  35. Seiffert, E. R., Perry, J. M. G., Simons, E. L. & Boyer, D. M. Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates.Nature461, 1118–1121 (2009)

    Article ADS CAS  Google Scholar 

  36. Simons, E. L.Primate Evolution: an Introduction to Man’s Place in Nature (Macmillan, 1972)

  37. Fleagle, J. G.Primate Adaptation and Evolution 2nd edn, 1–596 (Academic, 1999)

  38. Covert, H. H. inThe Primate Fossil Record (ed. Hartwig, W. C. ) 13–20 (Cambridge Univ. Press, 2002)

  39. Beard, K. C. inMammal Phylogeny Vol. 2Placentals (eds Szalay, F. S., Novacek, M. J. & McKenna, M. C. ) 129–150 (Springer, 1993)

  40. Rasolooarison, R., Goodman, S. & Ganzhorn, J. Taxonomic revision of mouse lemurs (Microcebus) in the western portions of Madagascar.Int. J. Primatol.21, 963–1019 (2000)

    Article  Google Scholar 

  41. Gebo, D. L. Locomotor diversity in prosimian primates.Am. J. Primatol.13, 271–281 (1987)

    Article  Google Scholar 

  42. Gebo, D. L., Dagosto, M., Ni, X. & Beard, K. C. Species diversity and postcranial anatomy of Eocene primates from Shanghuang, China.Evol. Anthropol.21, 224–238 (2012)

    Article  Google Scholar 

  43. Rose, K. D. The earliest primates.Evol. Anthropol.3, 159–173 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This project has been supported by the Strategic Priority Research Program of Chinese Academy of Sciences (CAS, XDB03020501), the National Basic Research Program of China (2012CB821904), the CAS 100-talent Program, the National Natural Science Foundation of China (40672009, 40872032), the US National Science Foundation (BCS 0820602), the ESRF (proposal ec347), and the Postdoctoral Research Fellowship Program of the American Museum of Natural History (AMNH). We are grateful to C. Li, Y. Wang, E. Delson, A. L. Rosenberger, E. Seiffert, M. T. Silcox and J. I. Bloch for helpful discussions. We thank C. Li and Q. Li for their assistance in the field, and C. Nemoz, T. Brochard and all the ID17 beamline team for their help during the synchrotron experiment. We thank the staff of the following museums for access to specimens: AMNH, Field Museum of Natural History, Chicago; Smithsonian Institution, Washington, D.C.; Carnegie Museum of Natural History, Pittsburgh; Royal Belgium Institute of Natural Sciences, Brussels.

Author information

Authors and Affiliations

  1. Key Laboratory of Vertebrate Evolution and Human Origin, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi Zhi Men Wai Street, 100044, Beijing, China

    Xijun Ni

  2. Division of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA,

    Xijun Ni, Jin Meng & John J. Flynn

  3. Department of Anthropology, Northern Illinois University, DeKalb, 60115, Illinois, USA

    Daniel L. Gebo

  4. Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, 60611, Illinois, USA

    Marian Dagosto

  5. European Synchrotron Radiation Facility, 38043, Grenoble, France

    Paul Tafforeau

  6. Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, USA

    K. Christopher Beard

Authors
  1. Xijun Ni

    You can also search for this author inPubMed Google Scholar

  2. Daniel L. Gebo

    You can also search for this author inPubMed Google Scholar

  3. Marian Dagosto

    You can also search for this author inPubMed Google Scholar

  4. Jin Meng

    You can also search for this author inPubMed Google Scholar

  5. Paul Tafforeau

    You can also search for this author inPubMed Google Scholar

  6. John J. Flynn

    You can also search for this author inPubMed Google Scholar

  7. K. Christopher Beard

    You can also search for this author inPubMed Google Scholar

Contributions

X.N. designed the study, analysed the data and wrote the paper. K.C.B., J.M., D.L.G. and M.D. contributed extensively and equally to the work presented in this paper. P.T. performed synchrotron microtomography experiments and edited the manuscript. J.J.F. collected part of the data and edited the manuscript.

Corresponding author

Correspondence toXijun Ni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-16, Supplementary Tables 1-15 and Supplementary References (see contents page for more details). (PDF 12294 kb)

Rights and permissions

About this article

Cite this article

Ni, X., Gebo, D., Dagosto, M.et al. The oldest known primate skeleton and early haplorhine evolution.Nature498, 60–64 (2013). https://doi.org/10.1038/nature12200

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

A well preserved early primate

Our knowledge of the earliest phases of primate evolution is limited by the gaps in the fossil record. Some light is shed by the discovery of a nearly complete and substantially articulated skeleton of a tiny and very ancient primate from the early Eocene of China, dating to 55 million years ago. The newly discovered primate appears to be the earliest known relative of the tarsiers, suggesting a very early divergence of the anthropoid lineage from the other primates. The animal was about the size of the modern pygmy mouse lemur, and skeletal features suggest that it was an agile insectivore with a diurnal habit.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp