- Letter
- Published:
Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2
- Michael J. Schmeisser1 na1,
- Elodie Ey2,3,4 na1,
- Stephanie Wegener5 na1,
- Juergen Bockmann1,
- A. Vanessa Stempel5,
- Angelika Kuebler1,
- Anna-Lena Janssen1,
- Patrick T. Udvardi1,
- Ehab Shiban1 nAff15,
- Christina Spilker6,
- Detlef Balschun7,
- Boris V. Skryabin8,9,
- Susanne tom Dieck10,
- Karl-Heinz Smalla11,
- Dirk Montag12,
- Claire S. Leblond2,3,4,
- Philippe Faure13,
- Nicolas Torquet2,3,4,
- Anne-Marie Le Sourd2,3,4,
- Roberto Toro2,3,4,
- Andreas M. Grabrucker1,
- Sarah A. Shoichet5,
- Dietmar Schmitz5,
- Michael R. Kreutz6,
- Thomas Bourgeron2,3,4,
- Eckart D. Gundelfinger11 &
- …
- Tobias M. Boeckers1
Naturevolume 486, pages256–260 (2012)Cite this article
18kAccesses
587Citations
39Altmetric
This article has beenupdated
Abstract
Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour1. Mutations in synaptic proteins such as neuroligins2,3, neurexins4, GKAPs/SAPAPs5 and ProSAPs/Shanks6,7,8,9,10 were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion11,12. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover,ProSAP1/Shank2−/− mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhancedN-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data onProSAP1/Shank2−/− mutants withProSAP2/Shank3αβ−/− mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Change history
13 June 2011
A present address was added to the affiliations.
References
Abrahams, B. S. & Geschwind, D. H. Advances in autism genetics: on the threshold of a new neurobiology.Nature Rev. Genet.9, 341–355 (2008)
Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism.Nature Genet.34, 27–29 (2003)
Etherton, M. R., Tabuchi, K., Sharma, M., Ko, J. & Südhof, T. C. An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus.EMBO J.30, 2908–2919 (2011)
Kim, H. G. et al. Disruption of neurexin 1 associated with autism spectrum disorder.Am. J. Hum. Genet.82, 199–207 (2008)
Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders.Nature466, 368–372 (2010)
Moessner, R. et al. Contribution of SHANK3 mutations to autism spectrum disorder.Am. J. Hum. Genet.81, 1289–1297 (2007)
Gauthier, J. et al. Novel de novo SHANK3 mutation in autistic patients.Am. J. Med. Genet. B. Neuropsychiatr. Genet.150B, 421–424 (2009)
Durand, C. M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.Nature Genet.39, 25–27 (2007)
Berkel, S. et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation.Nature Genet.42, 489–491 (2010)
Leblond, C. S. et al. Genetic and functional analyses ofSHANK2 mutations provide evidence for a multiple hit model of autism spectrum disorders.PLoS Genet.8, e1002521 (2012)
Baron, M. K. et al. An architectural framework that may lie at the core of the postsynaptic density.Science311, 531–535 (2006)
Grabrucker, A. M. et al. Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation.EMBO J.30, 569–581 (2011)
Toro, R. et al. Key role for gene dosage and synaptic homeostasis in autism spectrum disorders.Trends Genet.26, 363–372 (2010)
Grabrucker, A. M., Schmeisser, M. J., Schoen, M. & Boeckers, T. M. Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies.Trends Cell Biol.21, 594–603 (2011)
Hamdan, F. F. et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability.Am. J. Hum. Genet.88, 306–316 (2011)
Bozdagi, O. et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication.Mol. Autism1, 15 (2010)
Peca, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction.Nature472, 437–442 (2011)
Wang, X. et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3.Hum. Mol. Genet.20, 3093–3108 (2011)
Bangash, M. A. et al. Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism.Cell145, 758–772 (2011)
Chao, H. T. et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.Nature468, 263–269 (2010)
Gemelli, T. et al. Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice.Biol. Psychiatry59, 468–476 (2006)
Boeckers, T. M. et al. Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density.J. Neurosci.19, 6506–6518 (1999)
Berkel, S. et al. Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology.Hum. Mol. Genet.21, 344–357 (2012)
Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice.Science318, 71–76 (2007)
Pearson, B. L. et al. Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism.Genes Brain Behav.10, 228–235 (2011)
Hung, A. Y. et al. Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1.J. Neurosci.28, 1697–1708 (2008)
Wohr, M., Roullet, F. I., Hung, A. Y., Sheng, M. & Crawley, J. N. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior.PLoS ONE6, e20631 (2011)
Silverman, J. L. et al. Sociability and motor functions in Shank1 mutant mice.Brain Res.1380, 120–137 (2011)
Ey, E., Leblond, C. S. & Bourgeron, T. Behavioral profiles of mouse models for autism spectrum disorders.Autism Res.4, 5–16 (2011)
Schmeisser, M. J., Grabrucker, A. M., Bockmann, J. & Boeckers, T. M. Synaptic cross-talk between N-methyl-D-aspartate receptors and LAPSER1-beta-catenin at excitatory synapses.J. Biol. Chem.284, 29146–29157 (2009)
Boeckers, T. M. et al. Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density.J. Neurosci.19, 6506–6518 (1999)
Grabrucker, A. M. et al. Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation.EMBO J.30, 569–581 (2011)
Zitzer, H., Hoenck, H. H., Baechner, D., Richter, D. & Kreienkamp, H. J. Somatostatin receptor interacting protein defines a novel family of multidomain proteins present in human and rodent brain.J. Biol. Chem.274, 32997–33001 (1999)
Schmitz, D., Mellor, J., Breustedt, J. & Nicoll, R. A. Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation.Nature Neurosci.6, 1058–1063 (2003)
Wishaw, I. Q., Haun, F. & Kolb, B. inModern Techniques in Neuroscience (eds Windhorst, U. & Johansson, H. ) 1243–1275 (Springer, 1999)
Rogers, D. C. et al. Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment.Mamm. Genome8, 711–713 (1997)
Nadler, J. J. et al. Automated apparatus for quantitation of social approach behaviors in mice.Genes Brain Behav.3, 303–314 (2004)
Bourgeron, T., Jamain, S. & Granon, S. inContemporary Clinical Neuroscience: Transgenic and Knockout Models of Neuropsychiatric Disorders (eds Fisch, G.S. & Flint, J. ) 151–174 (Humana Press, 2006)
Montag-Sallaz, M., Schachner, M. & Montag, D. Misguided axonal projections, NCAM180 mRNA upregulation, and altered behavior in mice deficient for the close homolog of L1 (CHL1).Mol. Cell. Biol.22, 7967–7981 (2002)
Scattoni, M. L. Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters.Genes Brain Behav.10, 44–56 (2011)
Acknowledgements
We thank M. Manz, R. Zienecker, S. Gerlach-Arbeiter, N. Damm, H. Riederer, C. Jean, S. Rieckmann, S. Hochmuth and K. Sowa for technical assistance. M.J.S., A.-L.J. and P.T.U. are members of the International Graduate School in Molecular Medicine at Ulm University. M.J.S. is further supported by Baustein 3.2 (L.SBN.0081), E.E. by the Fondation de France and the Agence Nationale de la Recherche (ANR) FLEXNEURIM (ANR09BLAN034003), S.W. and A.V.S. by the Deutsche Forschungsgemeinschaft (DFG) (GRK 1123), A.M.G. by Baustein 3.2 (L.SBN.0083), S.A.S by the DFG (EXC 257), D.S. by the DFG (SFB 618, SFB 665, EXC 257), the Bundesministerium für Bildung und Forschung (BMBF) (BCCN, BFNL) and the Einstein Foundation, M.R.K. by the DFG (SFB 779), C.S.L., R.T., N.T., A.LS. and T.B. by the ANR (ANR-08-MNPS-037-01 - SynGen), Neuron-ERANET (EUHF-AUTISM), Fondation Orange and the Fondation FondaMentale, P.F. by the Bettencourt-Schueller Fondation, R.T., T.B., P.F. by the CNRS Neuroinformatic, E.D.G. by the DFG (SFB 779) and the BMBF (EraNET Neuron), and T.M.B. by the DFG (Bo 1718/3-1 and 1718/4-1; SFB 497/B8).
Author information
Ehab Shiban
Present address: Present address: Klinikum rechts der Isar, Technische Universität München, Neurosurgery Department, Ismaninger Str. 22, 81675 Munich, Germany.,
Michael J. Schmeisser, Elodie Ey and Stephanie Wegener: These authors contributed equally to this work.
Authors and Affiliations
Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany,
Michael J. Schmeisser, Juergen Bockmann, Angelika Kuebler, Anna-Lena Janssen, Patrick T. Udvardi, Ehab Shiban, Andreas M. Grabrucker & Tobias M. Boeckers
Human Genetics and Cognitive Functions, Institut Pasteur, 75724 Paris CEDEX 15, France,
Elodie Ey, Claire S. Leblond, Nicolas Torquet, Anne-Marie Le Sourd, Roberto Toro & Thomas Bourgeron
CNRS, URA 2182 ‘Genes, Synapses and Cognition’, Institut Pasteur, 75724 Paris CEDEX 15, France,
Elodie Ey, Claire S. Leblond, Nicolas Torquet, Anne-Marie Le Sourd, Roberto Toro & Thomas Bourgeron
University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, 75013 Paris, France,
Elodie Ey, Claire S. Leblond, Nicolas Torquet, Anne-Marie Le Sourd, Roberto Toro & Thomas Bourgeron
Neuroscience Research Center, Cluster of Excellence NeuroCure, Charité, 10117 Berlin, Germany,
Stephanie Wegener, A. Vanessa Stempel, Sarah A. Shoichet & Dietmar Schmitz
PG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany,
Christina Spilker & Michael R. Kreutz
Department of Psychology, Laboratory of Biological Psychology, Catholic University of Leuven, 3000 Leuven, Belgium,
Detlef Balschun
Institute of Experimental Pathology (ZMBE), University of Muenster, 48149 Muenster, Germany,
Boris V. Skryabin
Interdisciplinary Center for Clinical Research (IZKF), University of Muenster, 48149 Muenster, Germany,
Boris V. Skryabin
Department of Synaptic Plasticity, Max Planck Institute for Brain Research, 60528 Frankfurt, Germany,
Susanne tom Dieck
Department of Neurochemistry, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany,
Karl-Heinz Smalla & Eckart D. Gundelfinger
Neurogenetics Special Laboratory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany,
Dirk Montag
University Paris 06, CNRS, UMR 7102, 75005 Paris, France,
Philippe Faure
- Michael J. Schmeisser
Search author on:PubMed Google Scholar
- Elodie Ey
Search author on:PubMed Google Scholar
- Stephanie Wegener
Search author on:PubMed Google Scholar
- Juergen Bockmann
Search author on:PubMed Google Scholar
- A. Vanessa Stempel
Search author on:PubMed Google Scholar
- Angelika Kuebler
Search author on:PubMed Google Scholar
- Anna-Lena Janssen
Search author on:PubMed Google Scholar
- Patrick T. Udvardi
Search author on:PubMed Google Scholar
- Ehab Shiban
Search author on:PubMed Google Scholar
- Christina Spilker
Search author on:PubMed Google Scholar
- Detlef Balschun
Search author on:PubMed Google Scholar
- Boris V. Skryabin
Search author on:PubMed Google Scholar
- Susanne tom Dieck
Search author on:PubMed Google Scholar
- Karl-Heinz Smalla
Search author on:PubMed Google Scholar
- Dirk Montag
Search author on:PubMed Google Scholar
- Claire S. Leblond
Search author on:PubMed Google Scholar
- Philippe Faure
Search author on:PubMed Google Scholar
- Nicolas Torquet
Search author on:PubMed Google Scholar
- Anne-Marie Le Sourd
Search author on:PubMed Google Scholar
- Roberto Toro
Search author on:PubMed Google Scholar
- Andreas M. Grabrucker
Search author on:PubMed Google Scholar
- Sarah A. Shoichet
Search author on:PubMed Google Scholar
- Dietmar Schmitz
Search author on:PubMed Google Scholar
- Michael R. Kreutz
Search author on:PubMed Google Scholar
- Thomas Bourgeron
Search author on:PubMed Google Scholar
- Eckart D. Gundelfinger
Search author on:PubMed Google Scholar
- Tobias M. Boeckers
Search author on:PubMed Google Scholar
Contributions
M.J.S., E.E., J.B., C.S., D.B., S.t.D., K.H.S., D.M., D.S., M.R.K., T.B., E.D.G. and T.M.B. designed the outline of this study. J.B. and B.V.S. generated, and J.B., C.S. and S.A.S. supervised breeding of, theProSAP1/Shank2-mutant mice. J.B. supervised breeding of theProSAP2/Shank3-mutant mice. M.J.S., A.K., A-L.J., P.T.U. and A.M.G. performed all the biochemistry, real-time PCR, Golgi stainings, electron microscopy, transfection of primary neurons and immunohistochemistry, E.E., C.S., D.M., C.S.L., P.F., N.T. and A.LS. the behavioural experiments, and S.W., A.V.S. and D.B. the electrophysiological experiments. E.S. conducted the survival analysis. M.J.S., E.E., S.W., A.V.S., C.S., D.B., D.M., R.T. and A.M.G. performed all data analyses and jointly drafted the manuscript with S.A.S., D.S., M.R.K., T.B., E.D.G. and T.M.B. All authors read and approved the final version. M.J.S., E.E. and S.W. contributed equally to this study. We thank H.-J. Kreienkamp, Hamburg, for providing the pan-Shank antibody ‘189.3’.
Corresponding author
Correspondence toTobias M. Boeckers.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Figures 1-15, Supplementary Methods, Supplementary References and Supplementary Tables. (PDF 3097 kb)
Rights and permissions
About this article
Cite this article
Schmeisser, M., Ey, E., Wegener, S.et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2.Nature486, 256–260 (2012). https://doi.org/10.1038/nature11015
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Combined expansion and STED microscopy reveals altered fingerprints of postsynaptic nanostructure across brain regions in ASD-related SHANK3-deficiency
- Jan Philipp Delling
- Helen Friedericke Bauer
- Tobias M. Boeckers
Molecular Psychiatry (2024)
The Shank/ProSAP N-Terminal (SPN) Domain of Shank3 Regulates Targeting to Postsynaptic Sites and Postsynaptic Signaling
- Daniel Woike
- Debora Tibbe
- Hans-Jürgen Kreienkamp
Molecular Neurobiology (2024)
Expression profiles of the autism-related SHANK proteins in the human brain
- Sarah Woelfle
- Maria T. Pedro
- Tobias M. Boeckers
BMC Biology (2023)
Shank3 deletion in PV neurons is associated with abnormal behaviors and neuronal functions that are rescued by increasing GABAergic signaling
- Jessica Pagano
- Silvia Landi
- Chiara Verpelli
Molecular Autism (2023)
Shank2 identifies a subset of glycinergic neurons involved in altered nociception in an autism model
- Florian Olde Heuvel
- Najwa Ouali Alami
- Francesco Roselli
Molecular Autism (2023)


