Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Spontaneous coherence in a cold exciton gas

Naturevolume 483pages584–588 (2012)Cite this article

Subjects

Abstract

If bosonic particles are cooled down below the temperature of quantum degeneracy, they can spontaneously form a coherent state in which individual matter waves synchronize and combine. Spontaneous coherence of matter waves forms the basis of a number of fundamental phenomena in physics, including superconductivity, superfluidity and Bose–Einstein condensation1,2. Spontaneous coherence is the key characteristic of condensation in momentum space3. Excitons—bound pairs of electrons and holes—form a model system to explore the quantum physics of cold bosons in solids4,5. Cold exciton gases can be realized in a system of indirect excitons, which can cool down below the temperature of quantum degeneracy owing to their long lifetimes6. Here we report measurements of spontaneous coherence in a gas of indirect excitons. We found that spontaneous coherence of excitons emerges in the region of the macroscopically ordered exciton state7 and in the region of vortices of linear polarization. The coherence length in these regions is much larger than in a classical gas, indicating a coherent state with a much narrower than classical exciton distribution in momentum space, characteristic of a condensate. A pattern of extended spontaneous coherence is correlated with a pattern of spontaneous polarization, revealing the properties of a multicomponent coherent state. We also observed phase singularities in the coherent exciton gas. All these phenomena emerge when the exciton gas is cooled below a few kelvin.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Emission, interference and coherence patterns of indirect excitons.
Figure 2:Coherence of indirect excitons in regions of an LBS and the external ring.
Figure 3:First-order coherence function and distribution in momentum space.
Figure 4:Patterns of the coherence length of excitons,ξ(x,y).
Figure 5:Fork-like defects in exciton interference patterns.

Similar content being viewed by others

References

  1. Cornell, E. A. & Wieman, C. E. Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments.Rev. Mod. Phys.74, 875–893 (2002)

    Article ADS CAS  Google Scholar 

  2. Ketterle, W. When atoms behave as waves: Bose-Einstein condensation and the atom laser.Rev. Mod. Phys.74, 1131–1151 (2002)

    Article ADS CAS  Google Scholar 

  3. Penrose, O. & Onsager, L. Bose-Einstein condensation and liquid helium.Phys. Rev.104, 576–584 (1956)

    Article ADS CAS  Google Scholar 

  4. Keldysh, L. V. & Kozlov, A. N. Collective properties of excitons in semiconductors.Sov. Phys. JETP27, 521–528 (1968)

    ADS  Google Scholar 

  5. Keldysh, L. V. & Kopaev Possible instability of the semimetallic state toward Coulomb interaction.Sov. Phys. Solid State6, 2219–2224 (1965)

    Google Scholar 

  6. Butov, L. V. et al. Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate Bose-gas of excitons.Phys. Rev. Lett.86, 5608–5611 (2001)

    Article ADS CAS  Google Scholar 

  7. Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system.Nature418, 751–754 (2002)

    Article ADS CAS  Google Scholar 

  8. Chen, X. M. & Quinn, J. J. Excitonic charge-density-wave instability of spatially separated electron-hole layers in strong magnetic fields.Phys. Rev. Lett.67, 895–898 (1991)

    Article ADS CAS  Google Scholar 

  9. Wu, C., Shem, I. M. & Exciton condensation with spontaneous time-reversal symmetry breaking Preprint athttp://arXiv.org/abs/0809.3532v1 (2008)

  10. Tikhodeev, S. G., Kopelevich, G. A. & Gippius, N. A. Exciton transport in Cu2O: phonon wind versus superfluidity.Phys. Status Solidi B206, 45–53 (1998)

    Article ADS CAS  Google Scholar 

  11. Jang, J. I. & Wolfe, J. P. Auger recombination and biexcitons in Cu2O: a case for dark exciton matter.Phys. Rev. B74, 045211 (2006)

    Article ADS  Google Scholar 

  12. Keldysh, L. V. The electron-hole liquid in semiconductors.Contemp. Phys.27, 395–428 (1986)

    Article ADS CAS  Google Scholar 

  13. Lozovik & Yudson, V. I. A new mechanism for superconductivity: pairing between spatially separated electrons and holes.Sov. Phys. JETP44, 389–397 (1976)

    ADS  Google Scholar 

  14. Fukuzawa, T., Kano, S. S., Gustafson, T. K. & Ogawa, T. Possibility of coherent-light emission from Bose condensed states of SEHPs.Surf. Sci.228, 482–485 (1990)

    Article ADS CAS  Google Scholar 

  15. Maialle, M. Z., de Andrada e Silva, E. A. & Sham, L. J. Exciton spin dynamics in quantum wells.Phys. Rev. B47, 15776–15788 (1993)

    Article ADS CAS  Google Scholar 

  16. Butov, L. V. & Filin, A. I. Anomalous transport and luminescence of indirect excitons in AlAs/GaAs coupled quantum wells as evidence for exciton condensation.Phys. Rev. B58, 1980–2000 (1998)

    Article ADS CAS  Google Scholar 

  17. Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet.Phys. Rev. Lett.84, 5808–5811 (2000)

    Article ADS CAS  Google Scholar 

  18. Eisenstein, J. P. & MacDonald, A. H. Bose-Einstein condensation of excitons in bilayer electron systems.Nature432, 691–694 (2004)

    Article ADS CAS  Google Scholar 

  19. Butov, L. V., Zrenner, A., Abstreiter, G., Böhm, G. & Weimann, G. Condensation of indirect excitons in coupled AlAs/GaAs quantum wells.Phys. Rev. Lett.73, 304–307 (1994)

    Article ADS CAS  Google Scholar 

  20. Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing.Phys. Rev. Lett.93, 036802 (2004)

    Article ADS CAS  Google Scholar 

  21. Tiemann, L. et al. Exciton condensate at a total filling factor of one in Corbino two-dimensional electron bilayers.Phys. Rev. B77, 033306 (2008)

    Article ADS  Google Scholar 

  22. Karmakar, B., Pellegrini, V., Pinczuk, A., Pfeiffer, L. N. & West, K. W. First-order quantum phase transition of excitons in quantum hall bilayers.Phys. Rev. Lett.102, 036802 (2009)

    Article ADS  Google Scholar 

  23. Sen., Yang, Hammack, A. T., Fogler, M. M., Butov, L. V. & Gossard, A. C. Coherence length of cold exciton gases in coupled quantum wells.Phys. Rev. Lett.97, 187402 (2006)

    Article ADS  Google Scholar 

  24. Fogler, M. M. Sen, Yang, Hammack, A. T., Butov, L. V. & Gossard, A. C. Effect of spatial resolution on the estimates of the coherence length of excitons in quantum wells.Phys. Rev. B78, 035411 (2008)

    Article ADS  Google Scholar 

  25. Read, D., Liew, T. C. H., Rubo, Y. G. & Kavokin, A. V. Stochastic polarization formation in exciton-polariton Bose-Einstein condensates.Phys. Rev. B80, 195309 (2009)

    Article ADS  Google Scholar 

  26. Butov, L. V. et al. Formation mechanism and low temperature instability of exciton rings.Phys. Rev. Lett.92, 117404 (2004)

    Article ADS CAS  Google Scholar 

  27. Rapaport, R. et al. Charge separation of dense two dimensional electron-hole gases: mechanism for exciton ring pattern formation.Phys. Rev. Lett.92, 117405 (2004)

    Article ADS CAS  Google Scholar 

  28. Scheuer, J. & Orenstein, M. Optical vortices crystals: spontaneous generation in nonlinear semiconductor microcavities.Science285, 230–233 (1999)

    Article CAS  Google Scholar 

  29. Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B. & Dalibard, J. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas.Nature441, 1118–1121 (2006)

    Article ADS CAS  Google Scholar 

  30. Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate.Nature Phys.4, 706–710 (2008)

    Article ADS CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Levitov, T. Ostatnický, L. Sham, B. Simons and C. Wu for discussions. This work was supported by the DOE Office of Basic Energy Sciences (DE-FG02-07ER46449). The development of spectroscopy in a dilution refrigerator was supported by ARO and NSF. M.M.F. was supported by the UCOP. A.V.K. was supported by the Royal Society (UK).

Author information

Authors and Affiliations

  1. Department of Physics, University of California at San Diego, La Jolla, 92093-0319, California, USA

    A. A. High, J. R. Leonard, A. T. Hammack, M. M. Fogler & L. V. Butov

  2. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK,

    A. V. Kavokin

  3. Spin Optics Laboratory, State University of Saint Petersburg, 1, Ulianovskaya, 198504, Russia,

    A. V. Kavokin

  4. Materials Department, University of California at Santa Barbara, Santa Barbara, 93106-5050, California, USA

    K. L. Campman & A. C. Gossard

Authors
  1. A. A. High
  2. J. R. Leonard
  3. A. T. Hammack
  4. M. M. Fogler
  5. L. V. Butov
  6. A. V. Kavokin
  7. K. L. Campman
  8. A. C. Gossard

Contributions

All authors contributed to the work presented in this paper.

Corresponding author

Correspondence toA. A. High.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-5 and additional references. (PDF 1132 kb)

Rights and permissions

About this article

Cite this article

High, A., Leonard, J., Hammack, A.et al. Spontaneous coherence in a cold exciton gas.Nature483, 584–588 (2012). https://doi.org/10.1038/nature10903

Download citation

This article is cited by

Comments

Commenting on this article is now closed.

  1. D. C. Dai

    The spontaneous macroscopic quantum coherence of excitons in a usual direct-gap semiconductor crystal bulk at 5 Kelvin has been successfully demonstrated on ultrafast timescale a few months ago (DOI:10.1103/PhysRevB.84.115206), unfortunately this paper does not mention this, on the contrary, it insists saying that " Owing to recombination, excitons have a finite lifetime that is too short to allow cooling to low temperatures in usual semiconductors."
    does this style scientifically strict and fit a paper on Nature?

Access through your institution
Buy or subscribe

Editorial Summary

Exciton condensate demonstrated

Like atoms, excitons — bound pairs of electrons and electron holes — can form a Bose–Einstein-condensate-like state with superfluidic properties below a critical temperature. In practice, this is difficult to achieve in a normal semiconductor owing to the short lifetime of excitons; they cannot be cooled down fast enough. This problem can be circumvented by making use of indirect excitons, which have much longer lifetimes because the electrons and holes are confined in separate quantum-well layers to prevent them from recombining too quickly. Previously, it has been shown that a cold exciton gas can be formed in this system; now, Highet al. observe spontaneous coherence in such a gas, characteristic of a condensate.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp