Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Neuron-type-specific signals for reward and punishment in the ventral tegmental area

Naturevolume 482pages85–88 (2012)Cite this article

Subjects

Abstract

Dopamine has a central role in motivation and reward. Dopaminergic neurons in the ventral tegmental area (VTA) signal the discrepancy between expected and actual rewards (that is, reward prediction error)1,2,3, but how they compute such signals is unknown. We recorded the activity of VTA neurons while mice associated different odour cues with appetitive and aversive outcomes. We found three types of neuron based on responses to odours and outcomes: approximately half of the neurons (type I, 52%) showed phasic excitation after reward-predicting odours and rewards in a manner consistent with reward prediction error coding; the other half of neurons showed persistent activity during the delay between odour and outcome that was modulated positively (type II, 31%) or negatively (type III, 18%) by the value of outcomes. Whereas the activity of type I neurons was sensitive to actual outcomes (that is, when the reward was delivered as expected compared to when it was unexpectedly omitted), the activity of type II and type III neurons was determined predominantly by reward-predicting odours. We ‘tagged’ dopaminergic and GABAergic neurons with the light-sensitive protein channelrhodopsin-2 and identified them based on their responses to optical stimulation while recording. All identified dopaminergic neurons were of type I and all GABAergic neurons were of type II. These results show that VTA GABAergic neurons signal expected reward, a key variable for dopaminergic neurons to calculate reward prediction error.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Odour-outcome association task in mice.
Figure 2:VTA neurons show three distinct response types.
Figure 3:Identifying dopaminergic and GABAergic neurons.
Figure 4:Response variability based on CS–US preference, reward omission and air puffs.

Similar content being viewed by others

References

  1. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward.Science275, 1593–1599 (1997)

    Article CAS  Google Scholar 

  2. Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal.Neuron47, 129–141 (2005)

    Article CAS  Google Scholar 

  3. Schultz, W. Behavioral theories and the neurophysiology of reward.Annu. Rev. Psychol.57, 87–115 (2006)

    Article  Google Scholar 

  4. Swanson, L. W. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat.Brain Res. Bull.9, 321–353 (1982)

    Article CAS  Google Scholar 

  5. Margolis, E. B., Lock, H., Hjelmstad, G. O. & Fields, H. L. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons?J. Physiol.577, 907–924 (2006)

    Article CAS  Google Scholar 

  6. Nair-Roberts, R. G. et al. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat.Neuroscience152, 1024–1031 (2008)

    Article CAS  Google Scholar 

  7. Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory.Annu. Rev. Neurosci.29, 565–598 (2006)

    Article CAS  Google Scholar 

  8. Lüscher, C. & Malenka, R. C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling.Neuron69, 650–663 (2011)

    Article  Google Scholar 

  9. Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons.J. Neurosci.12, 483–488 (1992)

    Article CAS  Google Scholar 

  10. Mansvelder, H. D., Keath, J. R. & McGehee, D. S. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas.Neuron33, 905–919 (2002)

    Article CAS  Google Scholar 

  11. Szabo, B., Siemes, S. & Wallmichrath, I. Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids.Eur. J. Neurosci.15, 2057–2061 (2002)

    Article  Google Scholar 

  12. Tan, K. R. et al. Neural bases for addictive properties of benzodiazepines.Nature463, 769–774 (2010)

    Article ADS CAS  Google Scholar 

  13. Dobi, A., Margolis, E. B., Wang, H.-L., Harvey, B. K. & Morales, M. Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons.J. Neurosci.30, 218–229 (2010)

    Article CAS  Google Scholar 

  14. Steffensen, S. C., Svingos, A. L., Pickel, V. M. & Henriksen, S. J. Electrophysiological characterization of GABAergic neurons in the ventral tegmental area.J. Neurosci.18, 8003–8015 (1998)

    Article CAS  Google Scholar 

  15. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals.Nature459, 837–841 (2009)

    Article ADS CAS  Google Scholar 

  16. Lammel, S. et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system.Neuron57, 760–773 (2008)

    Article CAS  Google Scholar 

  17. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.Proc. Natl Acad. Sci. USA100, 13940–13945 (2003)

    Article ADS CAS  Google Scholar 

  18. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity.Nature Neurosci.8, 1263–1268 (2005)

    Article CAS  Google Scholar 

  19. Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping.J. Neurosci.28, 7025–7030 (2008)

    Article CAS  Google Scholar 

  20. Fiorillo, C. D., Newsome, W. T. & Schultz, W. The temporal precision of reward prediction in dopamine neurons.Nature Neurosci.11, 966–973 (2008)

    Article CAS  Google Scholar 

  21. Takikawa, Y., Kawagoe, R. & Hikosaka, O. A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping.J. Neurophysiol.92, 2520–2529 (2004)

    Article  Google Scholar 

  22. Rescorla, R. A. & Wagner, A. R. inClassical Conditioning II: Current Research and Theory (eds Black, A. H. & Wagner, A. R. ) 64–99 (New York, 1972)

    Google Scholar 

  23. Houk, J. C., Adams, J. L. & Barto, A. G. inModels of Information Processing in the Basal Ganglia (eds Houk, J. C., Davis, J. L. & Beiser, D. G. ) 249–270 (MIT Press, 1995)

    Google Scholar 

  24. Carr, D. B. & Sesack, S. R. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons.J. Neurosci.20, 3864–3873 (2000)

    Article CAS  Google Scholar 

  25. Okada, K., Toyama, K., Inoue, Y., Isa, T. & Kobayashi, Y. Different pedunculopontine tegmental neurons signal predicted and actual task rewards.J. Neurosci.29, 4858–4870 (2009)

    Article CAS  Google Scholar 

  26. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons.Nature447, 1111–1115 (2007)

    Article ADS CAS  Google Scholar 

  27. Takahashi, Y. K. et al. Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex.Nature Neurosci.14, 1590–1597 (2011)

    Article CAS  Google Scholar 

  28. Omelchenko, N. & Sesack, S. R. Ultrastructural analysis of local collaterals of rat ventral tegmental area neurons: GABA phenotype and synapses onto dopamine and GABA cells.Synapse63, 895–906 (2009)

    Article CAS  Google Scholar 

  29. Jhou, T. C., Fields, H. L., Baxter, M. G., Saper, C. B. & Holland, P. C. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses.Neuron61, 786–800 (2009)

    Article CAS  Google Scholar 

  30. Redish, A. D. Addiction as a computational process gone awry.Science306, 1944–1947 (2004)

    Article ADS CAS  Google Scholar 

  31. Bäckman, C. M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus.Genesis44, 383–390 (2006)

    Article  Google Scholar 

  32. Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons.Neuron71, 142–154 (2011)

    Article CAS  Google Scholar 

  33. Tsai, H. C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning.Science324, 1080–1084 (2009)

    Article ADS CAS  Google Scholar 

  34. Uchida, N. & Mainen, Z. F. Speed and accuracy of olfactory discrimination in the rat.Nature Neurosci.6, 1224–1229 (2003)

    Article CAS  Google Scholar 

  35. Lima, S. Q., Hromádka, T., Znamenskiy, P. & Zador, A. M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording.PLoS ONE4, e6099 (2009)

    Article ADS  Google Scholar 

  36. Zhao, S. et al. Cell-type specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function.Nature Methods8, 745–752 (2011)

    Article CAS  Google Scholar 

  37. Thompson, K. G., Hanes, D. P., Bichot, N. P. & Schall, J. D. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.J. Neurophysiol.76, 4040–4055 (1996)

    Article CAS  Google Scholar 

  38. Schmitzer-Torbert, N. & Redish, A. D. Neuronal activity in the rodent dorsal striatum in sequential navigation: separation of spatial and reward responses on the Multiple T Task.J. Neurophysiol.91, 2259–2272 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Meister, V. N. Murthy, J. D. Schall and R. P. Heitz for comments, C. Dulac for sharing resources, C. I. Moore, J. Ritt and J. Siegle for advice about microdrives, K. Deisseroth for the AAV-FLEX-ChR2 construct, and E. Soucy and J. Greenwood for technical support. This work was supported by a Howard Hughes Medical Institute Fellowship from the Helen Hay Whitney Foundation (J.Y.C.); the Human Frontiers Science Program (S.H.); a Howard Hughes Medical Institute Collaborative Innovation Award, a Smith Family New Investigator Award, the Alfred Sloan Foundation, the Milton Fund (N.U.); F32 DK078478, P30 DK046200 (L.V.); and R01 DK075632, R01 DK089044, P30 DK046200, P30 DK057521 (B.B.L.).

Author information

Author notes
  1. Jeremiah Y. Cohen and Sebastian Haesler: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, 02138, Massachusetts, USA

    Jeremiah Y. Cohen, Sebastian Haesler & Naoshige Uchida

  2. Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215, Massachusetts, USA

    Linh Vong & Bradford B. Lowell

Authors
  1. Jeremiah Y. Cohen

    You can also search for this author inPubMed Google Scholar

  2. Sebastian Haesler

    You can also search for this author inPubMed Google Scholar

  3. Linh Vong

    You can also search for this author inPubMed Google Scholar

  4. Bradford B. Lowell

    You can also search for this author inPubMed Google Scholar

  5. Naoshige Uchida

    You can also search for this author inPubMed Google Scholar

Contributions

J.Y.C. and S.H. collected and analysed data. J.Y.C., S.H. and N.U. designed experiments and wrote the paper. L.V. and B.B.L. generatedVgat-Cre mice.

Corresponding author

Correspondence toNaoshige Uchida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Notes 1-3 and Supplementary Figures 1-13 with legends. (PDF 8062 kb)

Rights and permissions

About this article

Cite this article

Cohen, J., Haesler, S., Vong, L.et al. Neuron-type-specific signals for reward and punishment in the ventral tegmental area.Nature482, 85–88 (2012). https://doi.org/10.1038/nature10754

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

The brain's response to reward

The ventral tegmental area (VTA), a part of the brain involved in reward and addiction, contains both dopaminergic and GABAergic signals, but the role of the subpopulations in reward representation and processing is unclear. Using optogenetics to identify dopaminergic and GABAergic neurons, this study characterizes VTA responses to rewarding and aversive stimuli. The two neuronal types are shown to have distinct responses to reward: dopaminergic neurons signal reward prediction errors, whereas GABAergic neurons signal reward expectation.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp