Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Second messenger role for Mg2+ revealed by human T-cell immunodeficiency

Naturevolume 475pages471–476 (2011)Cite this article

Subjects

Abstract

The magnesium ion, Mg2+, is essential for all life as a cofactor for ATP, polyphosphates such as DNA and RNA, and metabolic enzymes, but whether it plays a part in intracellular signalling (as Ca2+ does) is unknown. Here we identify mutations in the magnesium transporter gene,MAGT1, in a novel X-linked human immunodeficiency characterized by CD4 lymphopenia, severe chronic viral infections, and defective T-lymphocyte activation. We demonstrate that a rapid transient Mg2+ influx is induced by antigen receptor stimulation in normal T cells and by growth factor stimulation in non-lymphoid cells. MAGT1 deficiency abrogates the Mg2+ influx, leading to impaired responses to antigen receptor engagement, including defective activation of phospholipase Cγ1 and a markedly impaired Ca2+ influx in T cells but not B cells. These observations reveal a role for Mg2+ as an intracellular second messenger coupling cell-surface receptor activation to intracellular effectors and identify MAGT1 as a possible target for novel therapeutics.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Patients have a proximal TCR activation defect.
Figure 2:Patients have MAGT1-null mutations.
Figure 3:TCR stimulation induces a MAGT1-dependent Mg2+ influx.
Figure 4:Requirement of receptor-stimulated Mg2+ influx for Ca2+ influx.
Figure 5:Knockdown and rescue of MAGT1.
Figure 6:MAGT1 deficiency impairs PLCγ1 activation upon TCR stimulation.

Similar content being viewed by others

Accession codes

Data deposits

The Illumina sequencing data has been deposited in dbGaP with accession code phs000365.v1.p1.

References

  1. Cakmak, I. & Kirkby, E. A. Role of magnesium in carbon partitioning and alleviating photooxidative damage.Physiol. Planta133, 692–704 (2008)

    Article CAS  Google Scholar 

  2. Cowan, J. A. Structural and catalytic chemistry of magnesium-dependent enzymes.Biometals15, 225–235 (2002)

    Article CAS  Google Scholar 

  3. Yang, W., Lee, J. Y. & Nowotny, M. Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity.Mol. Cell22, 5–13 (2006)

    Article CAS  Google Scholar 

  4. Gasser, A., Bruhn, S. & Guse, A. H. Second messenger function of nicotinic acid adenine dinucleotide phosphate revealed by an improved enzymatic cycling assay.J. Biol. Chem.281, 16906–16913 (2006)

    Article CAS  Google Scholar 

  5. Grubbs, R. D. & Maguire, M. E. Magnesium as a regulatory cation: criteria and evaluation.Magnesium6, 113–127 (1987)

    CAS PubMed  Google Scholar 

  6. Murphy, E. Mysteries of magnesium homeostasis.Circ. Res.86, 245–248 (2000)

    Article CAS  Google Scholar 

  7. Permyakov, E. A. & Kretsinger, R. H. Cell signaling, beyond cytosolic calcium in eukaryotes.J. Inorg. Biochem.103, 77–86 (2009)

    Article CAS  Google Scholar 

  8. Takaya, J., Higashino, H. & Kobayashi, Y. Can magnesium act as a second messenger? Current data on translocation induced by various biologically active substances.Magnes. Res.13, 139–146 (2000)

    CAS PubMed  Google Scholar 

  9. Hogan, P. G., Lewis, R. S. & Rao, A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI.Annu. Rev. Immunol.28, 491–533 (2010)

    Article CAS  Google Scholar 

  10. Romani, A. M. Magnesium homeostasis in mammalian cells.Front. Biosci.12, 308–331 (2007)

    Article CAS  Google Scholar 

  11. Abboud, C. N., Scully, S. P., Lichtman, A. H., Brennan, J. K. & Segel, G. B. The requirements for ionized calcium and magnesium in lymphocyte proliferation.J. Cell. Physiol.122, 64–72 (1985)

    Article CAS  Google Scholar 

  12. Modiano, J. F., Kelepouris, E., Kern, J. A. & Nowell, P. C. Requirement for extracellular calcium or magnesium in mitogen-induced activation of human peripheral blood lymphocytes.J. Cell. Physiol.135, 451–458 (1988)

    Article CAS  Google Scholar 

  13. Whitney, R. B. & Sutherland, R. M. The influence of calcium, magnesium and cyclic adenosine 3′,5′-monophosphate on the mixed lymphocyte reaction.J. Immunol.108, 1179–1183 (1972)

    CAS PubMed  Google Scholar 

  14. Ng, L. L., Davies, J. E. & Garrido, M. C. Intracellular free magnesium in human lymphocytes and the response to lectins.Clin. Sci. (Lond.)80, 539–547 (1991)

    Article CAS  Google Scholar 

  15. Rijkers, G. T. & Griffioen, A. W. Changes in free cytoplasmic magnesium following activation of human lymphocytes.Biochem. J.289, 373–377 (1993)

    Article CAS  Google Scholar 

  16. Chun, H. J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency.Nature419, 395–399 (2002)

    Article ADS CAS  Google Scholar 

  17. Notarangelo, L. D. Primary immunodeficiencies.J. Allergy Clin. Immunol.125, S182–S194 (2010)

    Article  Google Scholar 

  18. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations.N. Engl. J. Med.361, 2046–2055 (2009)

    Article CAS  Google Scholar 

  19. Chan, A. C. et al. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency.Science264, 1599–1601 (1994)

    Article ADS CAS  Google Scholar 

  20. Peterson, E. J. & Koretzky, G. A. Signal transduction in T lymphocytes.Clin. Exp. Rheumatol.17, 107–114 (1999)

    CAS PubMed  Google Scholar 

  21. Arpaia, E., Shahar, M., Dadi, H., Cohen, A. & Roifman, C. M. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase.Cell76, 947–958 (1994)

    Article CAS  Google Scholar 

  22. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function.Nature441, 179–185 (2006)

    Article ADS CAS  Google Scholar 

  23. Unexplained CD4+ T-lymphocyte depletion in persons without evident HIV infection — United States.MMWR Morb. Mortal. Wkly. Rep.41, 541–545 (1992)

  24. Laurence, J., Siegal, F. P., Schattner, E., Gelman, I. H. & Morse, S. Acquired immunodeficiency without evidence of infection with human immunodeficiency virus types 1 and 2.Lancet340, 273–274 (1992)

    Article CAS  Google Scholar 

  25. Smith, D. K., Neal, J. J. & Holmberg, S. D. Unexplained opportunistic infections and CD4+ T-lymphocytopenia without HIV infection. An investigation of cases in the United States.N. Engl. J. Med.328, 373–379 (1993)

    Article CAS  Google Scholar 

  26. Fauci, A. S. CD4+ T-lymphocytopenia without HIV infection — no lights, no camera, just facts.N. Engl. J. Med.328, 429–431 (1993)

    Article CAS  Google Scholar 

  27. Freier, S. et al. Hereditary CD4+ T lymphocytopenia.Arch. Dis. Child.78, 371–372 (1998)

    Article CAS  Google Scholar 

  28. Lin, S. J., Chao, H. C., Yan, D. C. & Kuo, M. L. Idiopathic CD4+ T lymphocytopenia in two siblings.Pediatr. Hematol. Oncol.18, 153–156 (2001)

    Article CAS  Google Scholar 

  29. Lobato, M. N., Spira, T. J. & Rogers, M. F. CD4+ T lymphocytopenia in children: lack of evidence for a new acquired immunodeficiency syndrome agent.Pediatr. Infect. Dis. J.14, 527–535 (1995)

    Article CAS  Google Scholar 

  30. Junge, S. et al. Correlation between recent thymic emigrants and CD31+ (PECAM-1) CD4+ T cells in normal individuals during aging and in lymphopenic children.Eur. J. Immunol.37, 3270–3280 (2007)

    Article CAS  Google Scholar 

  31. Kimmig, S. et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood.J. Exp. Med.195, 789–794 (2002)

    Article CAS  Google Scholar 

  32. Kohler, S. & Thiel, A. Life after the thymus: CD31+ and CD31− human naive CD4+ T-cell subsets.Blood113, 769–774 (2009)

    Article CAS  Google Scholar 

  33. Wengler, G. S. et al. A PCR-based non-radioactive X-chromosome inactivation assay for genetic counseling in X-linked primary immunodeficiencies.Life Sci.61, 1405–1411 (1997)

    Article CAS  Google Scholar 

  34. Goytain, A. & Quamme, G. A. Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties.BMC Genomics6, 48–66 (2005)

    Article  Google Scholar 

  35. Quamme, G. A. Molecular identification of ancient and modern mammalian magnesium transporters.Am. J. Physiol. Cell Physiol.298, C407–C429 (2010)

    Article CAS  Google Scholar 

  36. Zhou, H. & Clapham, D. E. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development.Proc. Natl Acad. Sci. USA106, 15750–15755 (2009)

    Article ADS CAS  Google Scholar 

  37. Xie, Z., Peng, J., Pennypacker, S. D. & Chen, Y. Critical role for the catalytic activity of phospholipase C-γ1 in epidermal growth factor-induced cell migration.Biochem. Biophys. Res. Commun.399, 425–428 (2010)

    Article CAS  Google Scholar 

  38. Weiss, A. & Littman, D. R. Signal transduction by lymphocyte antigen receptors.Cell76, 263–274 (1994)

    Article CAS  Google Scholar 

  39. Nel, A. E. T-cell activation through the antigen receptor. Part 1: signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse.J. Allergy Clin. Immunol.109, 758–770 (2002)

    Article CAS  Google Scholar 

  40. Sutherland, E. W. Studies on the mechanism of hormone action.Science177, 401–408 (1972)

    Article ADS CAS  Google Scholar 

  41. Flynn, A. Control ofin vitro lymphocyte proliferation by copper, magnesium and zinc deficiency.J. Nutr.114, 2034–2042 (1984)

    Article CAS  Google Scholar 

  42. Sabbagh, F., Lecerf, F., Hulin, A., Bac, P. & German-Fattal, M. Effect of hypomagnesemia on allogeneic activation in mice.Transpl. Immunol.20, 83–87 (2008)

    Article CAS  Google Scholar 

  43. Jin, J. et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis.Science322, 756–760 (2008)

    Article ADS CAS  Google Scholar 

  44. Cossu, F. Genetics of SCID.Ital. J. Pediatr.36, 36–76 (2010)

    Article  Google Scholar 

  45. Filipovich, A. H., Zhang, K., Snow, A. L. & Marsh, R. A. X-linked lymphoproliferative syndromes: brothers or distant cousins?Blood116, 3398–3408 (2010)

    Article CAS  Google Scholar 

  46. Fu, G. et al. Phospholipase Cγ1 is essential for T cell development, activation, and tolerance.J. Exp. Med.207, 309–318 (2010)

    Article CAS  Google Scholar 

  47. Crabtree, G. R. Contingent genetic regulatory events in T lymphocyte activation.Science243, 355–361 (1989)

    Article ADS CAS  Google Scholar 

  48. Petrovas, C. et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection.J. Exp. Med.203, 2281–2292 (2006)

    Article CAS  Google Scholar 

  49. Allen, R. C., Zoghbi, H. Y., Moseley, A. B., Rosenblatt, H. M. & Belmont, J. W. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation.Am. J. Hum. Genet.51, 1229–1239 (1992)

    CAS PubMed PubMed Central  Google Scholar 

  50. Weber, K., Bartsch, U., Stocking, C. & Fehse, B. A multicolor panel of novel lentiviral “Gene Ontology” (LeGO) vectors for functional gene analysis.Mol. Ther.16, 698–706 (2008)

    Article CAS  Google Scholar 

  51. Killilea, D. W. & Ames, B. N. Magnesium deficiency accelerates cellular senescence in cultured human fibroblasts.Proc. Natl Acad. Sci. USA105, 5768–5773 (2008)

    Article ADS CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Zheng, A. Weiss, R. Germain, R. Siegel, F. Wolf and P. Schwartzberg for critically reading the manuscript; F. Wolf for advice on magnesium assessments; L. Zheng, C. Lowell and A. Weiss for advice on experiments and data; H. Jing for making HVS lines from patient cells; P. Chen for assistance with plasmid DNA preparation; N. Sandler for flow cytometry assistance; A. Snow and H. Jing for assistance with genomic DNA library preparation for Solexa sequencing; J. Almenara and Illumina staff for Solexa assistance; D. Killilea for assistance with MS-ICP data interpretation; and A. Irani for referring the patients. F.-Y.L. is in the Medical Scientist Training Program at the University of California–San Francisco and thanks K. Shannon and J. Toutolmin for support and encouragement. This work was supported by the Division of Intramural Research of the National Institute of Allergy and Infectious Diseases of the US National Institutes of Health.

Author information

Author notes
  1. Feng-Yen Li and Benjamin Chaigne-Delalande: These authors contributed equally to this work.

Authors and Affiliations

  1. Molecular Development Section, Lymphocyte Molecular Genetics Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, Maryland, USA

    Feng-Yen Li, Benjamin Chaigne-Delalande, Chrysi Kanellopoulou, Helen F. Matthews & Michael J. Lenardo

  2. Biomedical Sciences Graduate Program, University of California-San Francisco, San Francisco, 94143, California, USA

    Feng-Yen Li

  3. Human Immunological Diseases Unit, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, Maryland, USA

    Jeremiah C. Davis & Helen C. Su

  4. Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, Maryland, USA

    Daniel C. Douek

  5. Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, Maryland, USA

    Jeffrey I. Cohen

  6. Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, Maryland, USA

    Gulbu Uzel

Authors
  1. Feng-Yen Li

    You can also search for this author inPubMed Google Scholar

  2. Benjamin Chaigne-Delalande

    You can also search for this author inPubMed Google Scholar

  3. Chrysi Kanellopoulou

    You can also search for this author inPubMed Google Scholar

  4. Jeremiah C. Davis

    You can also search for this author inPubMed Google Scholar

  5. Helen F. Matthews

    You can also search for this author inPubMed Google Scholar

  6. Daniel C. Douek

    You can also search for this author inPubMed Google Scholar

  7. Jeffrey I. Cohen

    You can also search for this author inPubMed Google Scholar

  8. Gulbu Uzel

    You can also search for this author inPubMed Google Scholar

  9. Helen C. Su

    You can also search for this author inPubMed Google Scholar

  10. Michael J. Lenardo

    You can also search for this author inPubMed Google Scholar

Contributions

F.-Y.L. characterized the MAGT1 mutations and the TCR activation defect in the patients. B.C.-D. characterized the Mg2+ influx and the signalling defects. B.C.-D., F.-Y.L., H.C.S. and M.J.L. conceived and planned the experiments, and prepared the manuscript. J.C.D. performed the lyonization assay. C.K. performed the RT–PCR experiments. G.U., J.I.C. and H.C.S. referred patients and provided clinical data. H.F.M. coordinated clinical protocol and sample collection. D.C.D. provided assistance with sequencing and flow cytometry, and guided some patient assessments. All authors discussed and revised the manuscript.

Corresponding author

Correspondence toMichael J. Lenardo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1, Supplementary Figures 1-11 with legends, a Supplementary Discussion and additional references. (PDF 1726 kb)

Rights and permissions

About this article

Cite this article

Li, FY., Chaigne-Delalande, B., Kanellopoulou, C.et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency.Nature475, 471–476 (2011). https://doi.org/10.1038/nature10246

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

Magnesium as a second messenger

The magnesium ion is the most abundant divalent cation in mammalian cells and is an essential cofactor for ATP, nucleic acids and numerous enzymes in animals and plants. Whether it serves as a second messenger in intracellular signalling — like calcium — has been controversial. New evidence suggests that it does. Liet al. identify mutations in the plasma membrane magnesium transporter MAGT1 in a novel X-linked immunodeficiency, and show that Mg2+ acts as a second messenger in responses triggered by T-cell receptors and EGF receptors. This identifies MAGT1 as a possible target for novel therapeutics.

Associated content

Magnesium in a signalling role

  • Ning Wu
  • André Veillette
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp