- Article
- Published:
Molecular basis of infrared detection by snakes
- Elena O. Gracheva1 na1,
- Nicholas T. Ingolia2,3,4 na1,
- Yvonne M. Kelly1,
- Julio F. Cordero-Morales1,
- Gunther Hollopeter1 nAff7,
- Alexander T. Chesler1,
- Elda E. Sánchez5,
- John C. Perez5,
- Jonathan S. Weissman2,3,4 &
- …
- David Julius1,2
Naturevolume 464, pages1006–1011 (2010)Cite this article
22kAccesses
447Citations
196Altmetric
This article has beenupdated
Abstract
Snakes possess a unique sensory system for detecting infrared radiation, enabling them to generate a ‘thermal image’ of predators or prey. Infrared signals are initially received by the pit organ, a highly specialized facial structure that is innervated by nerve fibres of the somatosensory system. How this organ detects and transduces infrared signals into nerve impulses is not known. Here we use an unbiased transcriptional profiling approach to identify TRPA1 channels as infrared receptors on sensory nerve fibres that innervate the pit organ. TRPA1 orthologues from pit-bearing snakes (vipers, pythons and boas) are the most heat-sensitive vertebrate ion channels thus far identified, consistent with their role as primary transducers of infrared stimuli. Thus, snakes detect infrared signals through a mechanism involving radiant heating of the pit organ, rather than photochemical transduction. These findings illustrate the broad evolutionary tuning of transient receptor potential (TRP) channels as thermosensors in the vertebrate nervous system.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Accession codes
Primary accessions
Gene Expression Omnibus
Data deposits
Deep sequencing data are archived under GEO accession numberGSE19911. GenBank accession numbers are GU562965 (Python regius TRPA1), GU562966 (Elaphe obsoleta lindheimeri TRPA1), GU562967 (Crotalus atrox TRPA1), GU562968 (Crotalus atrox TRPV1), and GU562969 (Corallus hortulanus TRPA1).
Change history
15 April 2010
A correction was made to the spelling of an author name (N.T.I.) on 15 April.
References
Bullock, T. H. & Cowles, R. B. Physiology of an infrared receptor: the facial pit of pit vipers.Science115, 541–543 (1952)
Campbell, A. L., Naik, R. R., Sowards, L. & Stone, M. O. Biological infrared imaging and sensing.Micron33, 211–225 (2002)
Ebert, J.Infrared Sense in Snakes – Behavioural and Anatomical Examinations (Crotalus atrox, Python regius, Corallus hortulanus). Dr rer. nat. thesis, Rheinische Friedrich Wilhelms Univ. Bonn. (2007)
Barrett, R., Maderson, P. F. A. & Meszler, R. M. inBiology of Reptilia (ed. Parsons, T. S.) Ch. 4 277–300 (Academic Press, 1970)
Ebert, J. & Schmitz, A. inHerpetologia Bonnensis II (eds Vences, M. Kohler, J., Ziegler T. & Bohme, W.) 215–217 (2006)
Terashima, S. & Liang, Y. F. Temperature neurons in the crotaline trigeminal ganglia.J. Neurophysiol.66, 623–634 (1991)
Amemiya, F., Ushiki, T., Goris, R. C., Atobe, Y. & Kusunoki, T. Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings.Anat. Rec.246, 135–146 (1996)
Bleichmar, H. & De Robertis, E. Submicroscopic morphology of the infrared receptor of pit vipers.Z. Zellforsch. Mikrosk. Anat.56, 748–761 (1962)
Hartline, P. H., Kass, L. & Loop, M. S. Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes.Science199, 1225–1229 (1978)
Newman, E. A. & Hartline, P. H. Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum.Science213, 789–791 (1981)
Molenaar, G. J. The sensory trigeminal system of a snake in the possession of infrared receptors. II. The central projections of the trigeminal nerve.J. Comp. Neurol.179, 137–151 (1978)
de Cock Buning, T., Terashima, S. & Goris, R. C. Python pit organs analyzed as warm python pit organs analyzed as warm receptors.Cell. Mol. Neurobiol.1, 271–278 (1981)
Warren, J. W. & Proske, U. Infrared receptors in the facial pits of the Australian python Morelia spilotes.Science159, 439–441 (1968)
Kishida, R., Amemiya, F., Kusunoki, T. & Terashima, S. A new tectal afferent nucleus of the infrared sensory system in the medulla oblongata of Crotaline snakes.Brain Res.195, 271–279 (1980)
Kishida, R., de Cock Buning, T. & Dubbeldam, J. L. Primary vagal nerve projections to the lateral descending trigeminal nucleus in boidae (Python molurus andBoa constrictor).Brain Res.263, 132–136 (1983)
Noble, G. K. & Schmidt, A. The structure and function of facial and labial pits of snakes.Proc. Am. Phil. Soc.77, 263–288 (1937)
Pappas, T. C., Motamedi, M. & Christensen, B. N. Unique temperature-activated neurons from pit viper thermosensors.Am. J. Physiol. Cell Physiol.287, C1219–C1228 (2004)
Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.Cell124, 1269–1282 (2006)
Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception.Nature413, 203–210 (2001)
Molenaar, G. J. An additional trigeminal system in certain snakes possessing infrared receptors.Brain Res.78, 340–344 (1974)
Schroeder, D. M. & Loop, M. S. Trigeminal projections in snakes possessing infrared sensitivity.J. Comp. Neurol.169, 1–13 (1976)
Eng, S. R., Dykes, I. M., Lanier, J., Fedtsova, N. & Turner, E. E. POU-domain factor Brn3a regulates both distinct and common programs of gene expression in the spinal and trigeminal sensory ganglia.Neural Dev.2, 3 (2007)
Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes.Proc. Natl Acad. Sci. USA101, 6062–6067 (2004)
Woolf, C. J. & Ma, Q. Nociceptors–noxious stimulus detectors.Neuron55, 353–364 (2007)
Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1.Nature427, 260–265 (2004)
Kobayashi, K. et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with aδ/c-fibers and colocalization with trk receptors.J. Comp. Neurol.493, 596–606 (2005)
Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli.Neuron21, 531–543 (1998)
Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.Neuron41, 849–857 (2004)
Macpherson, L. J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines.Nature445, 541–545 (2007)
Hinman, A., Chuang, H. H., Bautista, D. M. & Julius, D. TRP channel activation by reversible covalent modification.Proc. Natl Acad. Sci. USA103, 19564–19568 (2006)
Prober, D. A. et al. Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function.J. Neurosci.28, 10102–10110 (2008)
Hamada, F. N. et al. An internal thermal sensor controlling temperature preference inDrosophila .Nature454, 217–220 (2008)
Viswanath, V. et al. Opposite thermosensor in fruitfly and mouse.Nature423, 822–823 (2003)
Krochmal, A. R., Bakken, G. S. & LaDuc, T. J. Heat in evolution’s kitchen: evolutionary perspectives on the functions and origin of the facial pit of pitvipers (Viperidae: Crotalinae).J. Exp. Biol.207, 4231–4238 (2004)
Safer, A. B. & Grace, M. S. Infrared imaging in vipers: differential responses of crotaline and viperine snakes to paired thermal targets.Behav. Brain Res.154, 55–61 (2004)
Kishida, R., Goris, R. C., Terashima, S. & Dubbeldam, J. L. A suspected infrared-recipient nucleus in the brainstem of the vampire bat,Desmodus rotundus .Brain Res.322, 351–355 (1984)
Jordt, S. E., McKemy, D. D. & Julius, D. Lessons from peppers and peppermint: the molecular logic of thermosensation.Curr. Opin. Neurobiol.13, 487–492 (2003)
Komatsu, H., Mori, I., Rhee, J. S., Akaike, N. & Ohshima, Y. Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation inC. elegans .Neuron17, 707–718 (1996)
Ramot, D., MacInnis, B. L. & Goodman, M. B. Bidirectional temperature-sensing by a single thermosensory neuron inC. elegans .Nature Neurosci.11, 908–915 (2008)
Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures.Cell112, 819–829 (2003)
Caspani, O. & Heppenstall, P. A. TRPA1 and cold transduction: an unresolved issue?J. Gen. Physiol.133, 245–249 (2009)
Wang, G. et al.Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae.Eur. J. Neurosci.30, 967–974 (2009)
Matsuura, H., Sokabe, T., Kohno, K., Tominaga, M. & Kadowaki, T. Evolutionary conservation and changes in insect TRP channels.BMC Evol. Biol.9, 228 (2009)
Dong, S. & Kumazawa, Y. Complete mitochondrial DNA sequences of six snakes: phylogenetic relationships and molecular evolution of genomic features.J. Mol. Evol.61, 1432 (2005)
Liman, E. R. Use it or lose it: molecular evolution of sensory signaling in primates.Pflugers Arch.453, 125–131 (2006)
Myers, B. R., Sigal, Y. M. & Julius, D. Evolution of thermal response properties in a cold-activated TRP channel.PLoS One4, e5741 (2009)
Chuang, H. H., Neuhausser, W. M. & Julius, D. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel.Neuron43, 859–869 (2004)
DeCoursey, T. E. & Cherny, V. V. Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes.J. Gen. Physiol.112, 503–522 (1998)
Acknowledgements
We thank A. Priel for advice and assistance with calcium imaging and electrophysiology, C. Chu for help with sequencing, J. Poblete for technical assistance, and the staff of the Natural Toxins Research Center serpentarium for animal husbandry. We thank P. Garrity for providing the dTrpA1 cDNA. This work was supported by a Ruth L. Kirschstein National Research Service Award (GM080853) (N.T.I.), a NIH Institutional Research Service Award in Molecular and Cellular Basis of Cardiovascular Disease (A.T.C.), the Howard Hughes Medical Institute (J.S.W.), and grants from the National Institutes of Health, including NCRR Viper grant P40 RR018300-06 (E.E.S. and J.C.P.), P01 AG010770 (J.S.W.) and NS047723 and NS055299 (D.J.).
Author Contributions E.O.G., J.F.C.-M. and N.T.I. designed and performed experiments and analysed data. N.T.I. and J.S.W. developed analytical tools and analysed data. Y.M.K., G.H. and A.T.C. performed experiments and/or provided reagents and analysed data. E.E.S. and J.C.P. supervised snake husbandry and handling. E.O.G., Y.M.K., J.F.C.-M. and D.J. wrote the manuscript with discussion and contributions from all authors. J.S.W. and D.J. provided advice and guidance throughout. D.J. initiated and supervised the project.
Author information
Gunther Hollopeter
Present address: Present address: Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA.,
Elena O. Gracheva and Nicholas T. Ingolia: These authors contributed equally to this work.
Authors and Affiliations
Department of Physiology,,
Elena O. Gracheva, Yvonne M. Kelly, Julio F. Cordero-Morales, Gunther Hollopeter, Alexander T. Chesler & David Julius
Department of Cellular and Molecular Pharmacology,,
Nicholas T. Ingolia, Jonathan S. Weissman & David Julius
Howard Hughes Medical Institute,,
Nicholas T. Ingolia & Jonathan S. Weissman
California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158-2517, USA ,
Nicholas T. Ingolia & Jonathan S. Weissman
Natural Toxins Research Center, Texas A&M University- Kingsville, Texas 78363, USA
Elda E. Sánchez & John C. Perez
- Elena O. Gracheva
Search author on:PubMed Google Scholar
- Nicholas T. Ingolia
Search author on:PubMed Google Scholar
- Yvonne M. Kelly
Search author on:PubMed Google Scholar
- Julio F. Cordero-Morales
Search author on:PubMed Google Scholar
- Gunther Hollopeter
Search author on:PubMed Google Scholar
- Alexander T. Chesler
Search author on:PubMed Google Scholar
- Elda E. Sánchez
Search author on:PubMed Google Scholar
- John C. Perez
Search author on:PubMed Google Scholar
- Jonathan S. Weissman
Search author on:PubMed Google Scholar
- David Julius
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toDavid Julius.
Supplementary information
Supplementary Figures
This file contains Supplementary Figures 1-8 with legends. (PDF 9759 kb)
Rights and permissions
About this article
Cite this article
Gracheva, E., Ingolia, N., Kelly, Y.et al. Molecular basis of infrared detection by snakes.Nature464, 1006–1011 (2010). https://doi.org/10.1038/nature08943
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
The kainate receptor GluK2 mediates cold sensing in mice
- Wei Cai
- Wenwen Zhang
- X. Z. Shawn Xu
Nature Neuroscience (2024)
Bioinspired nanotransducers for neuromodulation
- Fan Yang
- Xiang Wu
- Guosong Hong
Nano Research (2024)
Two single-point mutations in Ankyrin Repeat one drastically change the threshold temperature of TRPV1
- Shogo Hori
- Michihiro Tateyama
- Osamu Saitoh
Nature Communications (2023)
TRPM8 thermosensation in poikilotherms mediates both skin colour and locomotor performance responses to cold temperature
- Hannan R. Malik
- Gabriel E. Bertolesi
- Sarah McFarlane
Communications Biology (2023)
Recent Progress of Bio-inspired Camouflage Materials: From Visible to Infrared Range
- Xiaochen Bu
- Hao Bai
Chemical Research in Chinese Universities (2023)


