- Review Article
- Published:
Cell mechanics and the cytoskeleton
Naturevolume 463, pages485–492 (2010)Cite this article
70kAccesses
2615Citations
28Altmetric
Abstract
The ability of a eukaryotic cell to resist deformation, to transport intracellular cargo and to change shape during movement depends on the cytoskeleton, an interconnected network of filamentous polymers and regulatory proteins. Recent work has demonstrated that both internal and external physical forces can act through the cytoskeleton to affect local mechanical properties and cellular behaviour. Attention is now focused on how cytoskeletal networks generate, transmit and respond to mechanical signals over both short and long timescales. An important insight emerging from this work is that long-lived cytoskeletal structures may act as epigenetic determinants of cell shape, function and fate.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Weiss, P. A. inThe Molecular Control of Cellular Activity (ed. Allen, J. M.) 1–72 (McGraw-Hill, 1961).
dos Remedios, C. G. et al. Actin binding proteins: regulation of cytoskeletal microfilaments.Physiol. Rev.83, 433–473 (2003).
Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex.Proc. Natl Acad. Sci. USA96, 3739–3744 (1999).
Weiner, O. D., Marganski, W. A., Wu, L. F., Altschuler, S. J. & Kirschner, M. W. An actin-based wave generator organizes cell motility.PLoS Biol.5, e221 (2007).
Bieling, P. et al. Reconstitution of a microtubule plus-end tracking systemin vitro.Nature450, 1100–1105 (2007).
Brangwynne, C. P. et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement.J. Cell Biol.173, 733–741 (2006).
Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs.Nature Rev. Cancer4, 253–265 (2004).
Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth.Nature312, 237–242 (1984).
Holy, T. E. & Leibler, S. Dynamic instability of microtubules as an efficient way to search in space.Proc. Natl Acad. Sci. USA91, 5682–5685 (1994).This paper showed that microtubule dynamics have a central role in spatial organization within cells.
Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments.Cell112, 453–465 (2003).
Parent, C. A. Making all the right moves: chemotaxis in neutrophils andDictyostelium .Curr. Opin. Cell Biol.16, 4–13 (2004).
Naumanen, P., Lappalainen, P. & Hotulainen, P. Mechanisms of actin stress fibre assembly.J. Microsc.231, 446–454 (2008).
Wiche, G. Role of plectin in cytoskeleton organization and dynamics.J. Cell Sci.111, 2477–2486 (1998).
Flitney, E. W., Kuczmarski, E. R., Adam, S. A. & Goldman, R. D. Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments.FASEB J.23, 2110–2119 (2009).
Tsai, M. Y. et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly.Science311, 1887–1893 (2006).
Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors.Nature389, 305–308 (1997).
Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes inXenopus egg extracts.Nature382, 420–425 (1996).The reconstitution of spindles in a cell extract, as reported in this paper, was a remarkable demonstration of the self-assembling properties of the cytoskeleton.
Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments.Proc. Natl Acad. Sci. USA95, 6181–6186 (1998).This paper presented the dendritic nucleation model for the assembly of branched actin networks.
Bailly, M. et al. Relationship between Arp2/3 complex and the barbed ends of actin filaments at the leading edge of carcinoma cells after epidermal growth factor stimulation.J. Cell Biol.145, 331–345 (1999).
Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia.J. Cell Biol.145, 1009–1026 (1999).
Cooper, J. A. & Sept, D. New insights into mechanism and regulation of actin capping protein.Int. Rev. Cell. Mol. Biol.267, 183–206 (2008).
Carlier, M. F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility.J. Cell Biol.136, 1307–1322 (1997).
Wachsstock, D. H., Schwarz, W. H. & Pollard, T. D. Cross-linker dynamics determine the mechanical properties of actin gels.Biophys. J.66, 801–809 (1994).
Hsiung, F., Ramirez-Weber, F. A., Iwaki, D. D. & Kornberg, T. B. Dependence ofDrosophila wing imaginal disc cytonemes on Decapentaplegic.Nature437, 560–563 (2005).
Liu, A. P. et al. Membrane-induced bundling of actin filaments.Nature Phys.4, 789–793 (2008).
Janmey, P. A. & McCulloch, C. A. Cell mechanics: integrating cell responses to mechanical stimuli.Annu. Rev. Biomed. Eng.9, 1–34 (2007).
Campellone, K. G., Webb, N. J., Znameroski, E. A. & Welch, M. D. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport.Cell134, 148–161 (2008).
Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts.Nature Cell Biol.1, 45–50 (1999).
MacKintosh, F. C., Kas, J. & Janmey, P. A. Elasticity of semiflexible biopolymer networks.Phys. Rev. Lett.75, 4425–4428 (1995).
Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels.Nature435, 191–194 (2005).In this study, the role of entropic elasticity was shown experimentally and modelled for a broad set of cytoskeletal polymers.
Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks.Science304, 1301–1305 (2004).
Tharmann, R., Claessens, M. M. & Bausch, A. R. Viscoelasticity of isotropically cross-linked actin networks.Phys. Rev. Lett.98, 088103 (2007).
Koenderink, G. H. et al. An active biopolymer network controlled by molecular motors.Proc. Natl Acad. Sci. USA106, 15192–15197 (2009).
Chaudhuri, O., Parekh, S. H. & Fletcher, D. A. Reversible stress softening of actin networks.Nature445, 295–298 (2007).This paper showed that the architecture of actin-filament networks affects the relative importance of entropic and enthalpic elasticity.
Wagner, B., Tharmann, R., Haase, I., Fischer, M. & Bausch, A. R. Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties.Proc. Natl Acad. Sci. USA103, 13974–13978 (2006).
Herant, M., Heinrich, V. & Dembo, M. Mechanics of neutrophil phagocytosis: behavior of the cortical tension.J. Cell Sci.118, 1789–1797 (2005).
Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L. & Mitchison, T. J. Non-equilibration of hydrostatic pressure in blebbing cells.Nature435, 365–369 (2005).
Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus.Nature Rev. Mol. Cell Biol.10, 75–82 (2009).
Basu, A., Joanny, J. F., Julicher, F. & Prost, J. Thermal and non-thermal fluctuations in active polar gels.Eur. Phys. J. E27, 149–160 (2008).
Bursac, P. et al. Cytoskeletal remodelling and slow dynamics in the living cell.Nature Mater.4, 557–561 (2005).
Keren, K. et al. Mechanism of shape determination in motile cells.Nature453, 475–480 (2008).
Dogterom, M. & Yurke, B. Measurement of the force–velocity relation for growing microtubules.Science278, 856–860 (1997).
Footer, M. J., Kerssemakers, J. W., Theriot, J. A. & Dogterom, M. Direct measurement of force generation by actin filament polymerization using an optical trap.Proc. Natl Acad. Sci. USA104, 2181–2186 (2007).
Parekh, S. H., Chaudhuri, O., Theriot, J. A. & Fletcher, D. A. Loading history determines the velocity of actin-network growth.Nature Cell Biol.7, 1219–1223 (2005).
Prass, M., Jacobson, K., Mogilner, A. & Radmacher, M. Direct measurement of the lamellipodial protrusive force in a migrating cell.J. Cell Biol.174, 767–772 (2006).
Janmey, P. A., Winer, J. P., Murray, M. E. & Wen, Q. The hard life of soft cells.Cell. Motil. Cytoskeleton66, 597–605 (2009).
Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate.Science310, 1139–1143 (2005).
Chen, C. S. Mechanotransduction — a field pulling together?J. Cell Sci.121, 3285–3292 (2008).
Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis.Nature Cell Biol.7, 947–953 (2005).
Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish.Nature Cell Biol.10, 429–436 (2008).
Cheng, G., Tse, J., Jain, R. K. & Munn, L. L. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.PLoS ONE4, e4632 (2009).
Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype.Cancer Cell8, 241–254 (2005).
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification.Cell126, 677–689 (2006).This paper showed that substrate elasticity can control the differentiation of mesenchymal stem cells.
Saha, K. et al. Substrate modulus directs neural stem cell behavior.Biophys. J.95, 4426–4438 (2008).
Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells.Science324, 1673–1677 (2009).
Berdyyeva, T. K., Woodworth, C. D. & Sokolov, I. Human epithelial cells increase their rigidity with ageingin vitro: direct measurements.Phys. Med. Biol.50, 81–92 (2005).
Burns, J. M., Cuschieri, A. & Campbell, P. A. Optimisation of fixation period on biological cells via time-lapse elasticity mapping.Jpn. J. Appl. Phys.45, 2341–2344 (2006).
Kato, S. et al. Characterization and phenotypic variation with passage number of cultured human endometrial adenocarcinoma cells.Tissue Cell40, 95–102 (2008).
Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas .Cell127, 1015–1026 (2006).
Mammoto, A. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis.Nature457, 1103–1108 (2009).
Weiss, P. A.Principles of Development; A Text in Experimental Embryology (H. Holt, 1939).
Sonneborn, T. M. The differentiation of cells.Proc. Natl Acad. Sci. USA51, 915–929 (1964).
Beisson, J. & Sonneborn, T. M. Cytoplasmic inheritance of organization of cell cortex inParamecium aurelia .Proc. Natl Acad. Sci. USA53, 275–282 (1965).
Albrecht-Buehler, G. Phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin.Cell12, 333–339 (1977).
Albrecht-Buehler, G. Daughter 3T3 cells. Are they mirror images of each other?J. Cell Biol.72, 595–603 (1977).
Delhanty, P., Leung, H. & Locke, M. Paired cytoskeletal patterns in an epithelium of siamese twin cells.Eur. J. Cell Biol.56, 443–450 (1991).
Anderson, C. T. & Stearns, T. Centriole age underlies asynchronous primary cilium growth in mammalian cells.Curr. Biol.19, 1498–1502 (2009).
Sato, M., Levesque, M. J. & Nerem, R. M. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress.Arteriosclerosis7, 276–286 (1987).
Janmey, P. A. The cytoskeleton and cell signaling: component localization and mechanical coupling.Physiol. Rev.78, 763–781 (1998).
Locke, M. Is there somatic inheritance of intracellular patterns?J. Cell Sci.96, 563–567 (1990).This paper summarized early examples of 'cytoskeletal epigenetics'.
Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery.Cell123, 305–320 (2005).
Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability.Nature460, 278–282 (2009).
Omary, M. B., Coulombe, P. A. & McLean, W. H. Intermediate filament proteins and their associated diseases.N. Engl. J. Med.351, 2087–2100 (2004).
Fygenson, D. K., Elbaum, M., Shraiman, B. & Libchaber, A. Microtubules and vesicles under controlled tension.Phys. Rev. E55, 850–859 (1997).
Pontani, L. L. et al. Reconstitution of an actin cortex inside a liposome.Biophys. J.96, 192–198 (2009).
Liu, A. P. & Fletcher, D. A. Biology under construction:in vitro reconstitution of cellular function.Nature Rev. Mol. Cell Biol.10, 644–650 (2009).
Jones, L. J., Carballido-Lopez, R. & Errington, J. Control of cell shape in bacteria: helical, actin-like filaments inBacillus subtilis .Cell104, 913–922 (2001).
Ausmees, N., Kuhn, J. R. & Jacobs-Wagner, C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape.Cell115, 705–713 (2003).
Garner, E. C., Campbell, C. S. & Mullins, R. D. Dynamic instability in a DNA-segregating prokaryotic actin homolog.Science306, 1021–1025 (2004).
Garner, E. C., Campbell, C. S., Weibel, D. B. & Mullins, R. D. Reconstitution of DNA segregation driven by assembly of a prokaryotic actin homolog.Science315, 1270–1274 (2007).
Derman, A. I. et al. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A.Mol. Microbiol.73, 534–552 (2009).
Rochlin, M. W., Dailey, M. E. & Bridgman, P. C. Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones.Mol. Biol. Cell10, 2309–2327 (1999).
Henson, J. H. et al. Two components of actin-based retrograde flow in sea urchin coelomocytes.Mol. Biol. Cell10, 4075–4090 (1999).
Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network.J. Cell Biol.160, 409–421 (2003).
Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling.Nature Rev. Mol. Cell Biol.2, 138–145 (2001).
Svitkina, T. M., Verkhovsky, A. B. & Borisy, G. G. Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells.J. Struct. Biol.115, 290–303 (1995).
Chaudhuri, O., Parekh, S. H., Lam, W. A. & Fletcher, D. A. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells.Nature Methods6, 383–387 (2009).
Stachowiak, J. C. et al. Unilamellar vesicle formation and encapsulation by microfluidic jetting.Proc. Natl Acad. Sci. USA105, 4697–4702 (2008).
Acknowledgements
We thank O. Chaudhuri, D. Richmond, V. Risca and other members of the Fletcher laboratory for discussion and assistance with this Review. We also benefited from interactions with the researchers and students in the 2009 Physiology course at the Marine Biological Laboratory, Woods Hole, Massachusetts. Work in our laboratories is supported by R01 grants from the National Institutes of Health (NIH) and by the Cell Propulsion Lab, an NIH Nanomedicine Development Center. We apologize to those colleagues whose work could not be cited because of space constraints.
Author information
Authors and Affiliations
Bioengineering and Biophysics, University of California, Berkeley, 94720, California, USA
Daniel A. Fletcher
Physical Biosciences, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
Daniel A. Fletcher
Cellular and Molecular Pharmacology, University of California, San Francisco, 94143, California, USA
R. Dyche Mullins
- Daniel A. Fletcher
Search author on:PubMed Google Scholar
- R. Dyche Mullins
Search author on:PubMed Google Scholar
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Reprints and permissions information is available athtpp://www.nature.com/reprints.
Correspondence should be addressed to D.A.F. (fletch@berkeley.edu) or R.D.M. (dyche@mullinslab.ucsf.edu).
Rights and permissions
About this article
Cite this article
Fletcher, D., Mullins, R. Cell mechanics and the cytoskeleton.Nature463, 485–492 (2010). https://doi.org/10.1038/nature08908
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Spike structure of gold nanobranches induces hepatotoxicity in mouse hepatocyte organoid models
- Rui Zhang
- Dan Li
- Xiangdong Kong
Journal of Nanobiotechnology (2024)
Immunofluorescence study of cytoskeleton in endothelial cells induced with malaria sera
- Mathusorn Wongsawat
- Supattra Glaharn
- Parnpen Viriyavejakul
Malaria Journal (2024)
Pattern recognition in the nucleation kinetics of non-equilibrium self-assembly
- Constantine Glen Evans
- Jackson O’Brien
- Arvind Murugan
Nature (2024)
Translational implications of CHRFAM7A, an elusive human-restricted fusion gene
- Ivanna Ihnatovych
- Ruth-Ann Saddler
- Kinga Szigeti
Molecular Psychiatry (2024)
Dual-color live imaging unveils stepwise organization of multiple basal body arrays by cytoskeletons
- Gen Shiratsuchi
- Satoshi Konishi
- Sachiko Tsukita
EMBO Reports (2024)


