Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Review Article
  • Published:

Cell mechanics and the cytoskeleton

Naturevolume 463pages485–492 (2010)Cite this article

Subjects

Abstract

The ability of a eukaryotic cell to resist deformation, to transport intracellular cargo and to change shape during movement depends on the cytoskeleton, an interconnected network of filamentous polymers and regulatory proteins. Recent work has demonstrated that both internal and external physical forces can act through the cytoskeleton to affect local mechanical properties and cellular behaviour. Attention is now focused on how cytoskeletal networks generate, transmit and respond to mechanical signals over both short and long timescales. An important insight emerging from this work is that long-lived cytoskeletal structures may act as epigenetic determinants of cell shape, function and fate.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elements of the cytoskeleton.
Figure 2: Building cytoskeletal structures.
Figure 3: Form meets function.
Figure 4: Force and shape.
Figure 5: Learning by building.

Similar content being viewed by others

References

  1. Weiss, P. A. inThe Molecular Control of Cellular Activity (ed. Allen, J. M.) 1–72 (McGraw-Hill, 1961).

    Google Scholar 

  2. dos Remedios, C. G. et al. Actin binding proteins: regulation of cytoskeletal microfilaments.Physiol. Rev.83, 433–473 (2003).

    Article PubMed CAS  Google Scholar 

  3. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex.Proc. Natl Acad. Sci. USA96, 3739–3744 (1999).

    Article ADS PubMed CAS  Google Scholar 

  4. Weiner, O. D., Marganski, W. A., Wu, L. F., Altschuler, S. J. & Kirschner, M. W. An actin-based wave generator organizes cell motility.PLoS Biol.5, e221 (2007).

    Article PubMed PubMed Central CAS  Google Scholar 

  5. Bieling, P. et al. Reconstitution of a microtubule plus-end tracking systemin vitro.Nature450, 1100–1105 (2007).

    Article ADS PubMed CAS  Google Scholar 

  6. Brangwynne, C. P. et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement.J. Cell Biol.173, 733–741 (2006).

    Article PubMed PubMed Central CAS  Google Scholar 

  7. Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs.Nature Rev. Cancer4, 253–265 (2004).

    Article CAS  Google Scholar 

  8. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth.Nature312, 237–242 (1984).

    Article ADS PubMed CAS  Google Scholar 

  9. Holy, T. E. & Leibler, S. Dynamic instability of microtubules as an efficient way to search in space.Proc. Natl Acad. Sci. USA91, 5682–5685 (1994).This paper showed that microtubule dynamics have a central role in spatial organization within cells.

    Article ADS PubMed CAS  Google Scholar 

  10. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments.Cell112, 453–465 (2003).

    Article PubMed CAS  Google Scholar 

  11. Parent, C. A. Making all the right moves: chemotaxis in neutrophils andDictyostelium .Curr. Opin. Cell Biol.16, 4–13 (2004).

    Article PubMed CAS  Google Scholar 

  12. Naumanen, P., Lappalainen, P. & Hotulainen, P. Mechanisms of actin stress fibre assembly.J. Microsc.231, 446–454 (2008).

    Article MathSciNet PubMed CAS  Google Scholar 

  13. Wiche, G. Role of plectin in cytoskeleton organization and dynamics.J. Cell Sci.111, 2477–2486 (1998).

    PubMed CAS  Google Scholar 

  14. Flitney, E. W., Kuczmarski, E. R., Adam, S. A. & Goldman, R. D. Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments.FASEB J.23, 2110–2119 (2009).

    Article PubMed PubMed Central CAS  Google Scholar 

  15. Tsai, M. Y. et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly.Science311, 1887–1893 (2006).

    Article ADS PubMed CAS  Google Scholar 

  16. Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors.Nature389, 305–308 (1997).

    Article ADS PubMed CAS  Google Scholar 

  17. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes inXenopus egg extracts.Nature382, 420–425 (1996).The reconstitution of spindles in a cell extract, as reported in this paper, was a remarkable demonstration of the self-assembling properties of the cytoskeleton.

    Article ADS PubMed CAS  Google Scholar 

  18. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments.Proc. Natl Acad. Sci. USA95, 6181–6186 (1998).This paper presented the dendritic nucleation model for the assembly of branched actin networks.

    Article ADS PubMed CAS  Google Scholar 

  19. Bailly, M. et al. Relationship between Arp2/3 complex and the barbed ends of actin filaments at the leading edge of carcinoma cells after epidermal growth factor stimulation.J. Cell Biol.145, 331–345 (1999).

    Article PubMed PubMed Central CAS  Google Scholar 

  20. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia.J. Cell Biol.145, 1009–1026 (1999).

    Article PubMed PubMed Central CAS  Google Scholar 

  21. Cooper, J. A. & Sept, D. New insights into mechanism and regulation of actin capping protein.Int. Rev. Cell. Mol. Biol.267, 183–206 (2008).

    Article PubMed PubMed Central CAS  Google Scholar 

  22. Carlier, M. F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility.J. Cell Biol.136, 1307–1322 (1997).

    Article PubMed PubMed Central CAS  Google Scholar 

  23. Wachsstock, D. H., Schwarz, W. H. & Pollard, T. D. Cross-linker dynamics determine the mechanical properties of actin gels.Biophys. J.66, 801–809 (1994).

    Article ADS PubMed PubMed Central CAS  Google Scholar 

  24. Hsiung, F., Ramirez-Weber, F. A., Iwaki, D. D. & Kornberg, T. B. Dependence ofDrosophila wing imaginal disc cytonemes on Decapentaplegic.Nature437, 560–563 (2005).

    Article ADS PubMed CAS  Google Scholar 

  25. Liu, A. P. et al. Membrane-induced bundling of actin filaments.Nature Phys.4, 789–793 (2008).

    Article ADS CAS  Google Scholar 

  26. Janmey, P. A. & McCulloch, C. A. Cell mechanics: integrating cell responses to mechanical stimuli.Annu. Rev. Biomed. Eng.9, 1–34 (2007).

    Article PubMed CAS  Google Scholar 

  27. Campellone, K. G., Webb, N. J., Znameroski, E. A. & Welch, M. D. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport.Cell134, 148–161 (2008).

    Article PubMed PubMed Central CAS  Google Scholar 

  28. Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts.Nature Cell Biol.1, 45–50 (1999).

    Article PubMed CAS  Google Scholar 

  29. MacKintosh, F. C., Kas, J. & Janmey, P. A. Elasticity of semiflexible biopolymer networks.Phys. Rev. Lett.75, 4425–4428 (1995).

    Article ADS PubMed CAS  Google Scholar 

  30. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels.Nature435, 191–194 (2005).In this study, the role of entropic elasticity was shown experimentally and modelled for a broad set of cytoskeletal polymers.

    Article ADS PubMed CAS  Google Scholar 

  31. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks.Science304, 1301–1305 (2004).

    Article ADS PubMed CAS  Google Scholar 

  32. Tharmann, R., Claessens, M. M. & Bausch, A. R. Viscoelasticity of isotropically cross-linked actin networks.Phys. Rev. Lett.98, 088103 (2007).

  33. Koenderink, G. H. et al. An active biopolymer network controlled by molecular motors.Proc. Natl Acad. Sci. USA106, 15192–15197 (2009).

    Article ADS PubMed  Google Scholar 

  34. Chaudhuri, O., Parekh, S. H. & Fletcher, D. A. Reversible stress softening of actin networks.Nature445, 295–298 (2007).This paper showed that the architecture of actin-filament networks affects the relative importance of entropic and enthalpic elasticity.

    Article ADS PubMed PubMed Central CAS  Google Scholar 

  35. Wagner, B., Tharmann, R., Haase, I., Fischer, M. & Bausch, A. R. Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties.Proc. Natl Acad. Sci. USA103, 13974–13978 (2006).

    Article ADS PubMed CAS  Google Scholar 

  36. Herant, M., Heinrich, V. & Dembo, M. Mechanics of neutrophil phagocytosis: behavior of the cortical tension.J. Cell Sci.118, 1789–1797 (2005).

    Article PubMed CAS  Google Scholar 

  37. Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L. & Mitchison, T. J. Non-equilibration of hydrostatic pressure in blebbing cells.Nature435, 365–369 (2005).

    Article ADS PubMed PubMed Central CAS  Google Scholar 

  38. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus.Nature Rev. Mol. Cell Biol.10, 75–82 (2009).

    Article CAS  Google Scholar 

  39. Basu, A., Joanny, J. F., Julicher, F. & Prost, J. Thermal and non-thermal fluctuations in active polar gels.Eur. Phys. J. E27, 149–160 (2008).

    Article PubMed CAS  Google Scholar 

  40. Bursac, P. et al. Cytoskeletal remodelling and slow dynamics in the living cell.Nature Mater.4, 557–561 (2005).

    Article ADS CAS  Google Scholar 

  41. Keren, K. et al. Mechanism of shape determination in motile cells.Nature453, 475–480 (2008).

    Article ADS PubMed PubMed Central CAS  Google Scholar 

  42. Dogterom, M. & Yurke, B. Measurement of the force–velocity relation for growing microtubules.Science278, 856–860 (1997).

    Article ADS PubMed CAS  Google Scholar 

  43. Footer, M. J., Kerssemakers, J. W., Theriot, J. A. & Dogterom, M. Direct measurement of force generation by actin filament polymerization using an optical trap.Proc. Natl Acad. Sci. USA104, 2181–2186 (2007).

    Article ADS PubMed CAS  Google Scholar 

  44. Parekh, S. H., Chaudhuri, O., Theriot, J. A. & Fletcher, D. A. Loading history determines the velocity of actin-network growth.Nature Cell Biol.7, 1219–1223 (2005).

    Article PubMed CAS  Google Scholar 

  45. Prass, M., Jacobson, K., Mogilner, A. & Radmacher, M. Direct measurement of the lamellipodial protrusive force in a migrating cell.J. Cell Biol.174, 767–772 (2006).

    Article PubMed PubMed Central CAS  Google Scholar 

  46. Janmey, P. A., Winer, J. P., Murray, M. E. & Wen, Q. The hard life of soft cells.Cell. Motil. Cytoskeleton66, 597–605 (2009).

    Article PubMed PubMed Central  Google Scholar 

  47. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate.Science310, 1139–1143 (2005).

    Article ADS PubMed CAS  Google Scholar 

  48. Chen, C. S. Mechanotransduction — a field pulling together?J. Cell Sci.121, 3285–3292 (2008).

    Article PubMed CAS  Google Scholar 

  49. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis.Nature Cell Biol.7, 947–953 (2005).

    Article PubMed CAS  Google Scholar 

  50. Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish.Nature Cell Biol.10, 429–436 (2008).

    Article PubMed CAS  Google Scholar 

  51. Cheng, G., Tse, J., Jain, R. K. & Munn, L. L. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.PLoS ONE4, e4632 (2009).

  52. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype.Cancer Cell8, 241–254 (2005).

    Article PubMed CAS  Google Scholar 

  53. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification.Cell126, 677–689 (2006).This paper showed that substrate elasticity can control the differentiation of mesenchymal stem cells.

    Article PubMed CAS  Google Scholar 

  54. Saha, K. et al. Substrate modulus directs neural stem cell behavior.Biophys. J.95, 4426–4438 (2008).

    Article ADS PubMed PubMed Central CAS  Google Scholar 

  55. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells.Science324, 1673–1677 (2009).

    Article ADS PubMed PubMed Central CAS  Google Scholar 

  56. Berdyyeva, T. K., Woodworth, C. D. & Sokolov, I. Human epithelial cells increase their rigidity with ageingin vitro: direct measurements.Phys. Med. Biol.50, 81–92 (2005).

    Article PubMed  Google Scholar 

  57. Burns, J. M., Cuschieri, A. & Campbell, P. A. Optimisation of fixation period on biological cells via time-lapse elasticity mapping.Jpn. J. Appl. Phys.45, 2341–2344 (2006).

    Article ADS CAS  Google Scholar 

  58. Kato, S. et al. Characterization and phenotypic variation with passage number of cultured human endometrial adenocarcinoma cells.Tissue Cell40, 95–102 (2008).

    Article PubMed CAS  Google Scholar 

  59. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas .Cell127, 1015–1026 (2006).

    Article PubMed PubMed Central CAS  Google Scholar 

  60. Mammoto, A. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis.Nature457, 1103–1108 (2009).

    Article ADS PubMed PubMed Central CAS  Google Scholar 

  61. Weiss, P. A.Principles of Development; A Text in Experimental Embryology (H. Holt, 1939).

    Google Scholar 

  62. Sonneborn, T. M. The differentiation of cells.Proc. Natl Acad. Sci. USA51, 915–929 (1964).

    Article ADS PubMed CAS  Google Scholar 

  63. Beisson, J. & Sonneborn, T. M. Cytoplasmic inheritance of organization of cell cortex inParamecium aurelia .Proc. Natl Acad. Sci. USA53, 275–282 (1965).

    Article ADS PubMed CAS  Google Scholar 

  64. Albrecht-Buehler, G. Phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin.Cell12, 333–339 (1977).

    Article PubMed CAS  Google Scholar 

  65. Albrecht-Buehler, G. Daughter 3T3 cells. Are they mirror images of each other?J. Cell Biol.72, 595–603 (1977).

    Article PubMed CAS  Google Scholar 

  66. Delhanty, P., Leung, H. & Locke, M. Paired cytoskeletal patterns in an epithelium of siamese twin cells.Eur. J. Cell Biol.56, 443–450 (1991).

    PubMed CAS  Google Scholar 

  67. Anderson, C. T. & Stearns, T. Centriole age underlies asynchronous primary cilium growth in mammalian cells.Curr. Biol.19, 1498–1502 (2009).

    Article PubMed PubMed Central CAS  Google Scholar 

  68. Sato, M., Levesque, M. J. & Nerem, R. M. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress.Arteriosclerosis7, 276–286 (1987).

    Article PubMed CAS  Google Scholar 

  69. Janmey, P. A. The cytoskeleton and cell signaling: component localization and mechanical coupling.Physiol. Rev.78, 763–781 (1998).

    Article PubMed CAS  Google Scholar 

  70. Locke, M. Is there somatic inheritance of intracellular patterns?J. Cell Sci.96, 563–567 (1990).This paper summarized early examples of 'cytoskeletal epigenetics'.

    Google Scholar 

  71. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery.Cell123, 305–320 (2005).

    Article PubMed CAS  Google Scholar 

  72. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability.Nature460, 278–282 (2009).

    Article ADS PubMed PubMed Central CAS  Google Scholar 

  73. Omary, M. B., Coulombe, P. A. & McLean, W. H. Intermediate filament proteins and their associated diseases.N. Engl. J. Med.351, 2087–2100 (2004).

    Article PubMed CAS  Google Scholar 

  74. Fygenson, D. K., Elbaum, M., Shraiman, B. & Libchaber, A. Microtubules and vesicles under controlled tension.Phys. Rev. E55, 850–859 (1997).

    Article ADS  Google Scholar 

  75. Pontani, L. L. et al. Reconstitution of an actin cortex inside a liposome.Biophys. J.96, 192–198 (2009).

    Article ADS PubMed CAS  Google Scholar 

  76. Liu, A. P. & Fletcher, D. A. Biology under construction:in vitro reconstitution of cellular function.Nature Rev. Mol. Cell Biol.10, 644–650 (2009).

    Article CAS  Google Scholar 

  77. Jones, L. J., Carballido-Lopez, R. & Errington, J. Control of cell shape in bacteria: helical, actin-like filaments inBacillus subtilis .Cell104, 913–922 (2001).

    Article PubMed CAS  Google Scholar 

  78. Ausmees, N., Kuhn, J. R. & Jacobs-Wagner, C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape.Cell115, 705–713 (2003).

    Article PubMed CAS  Google Scholar 

  79. Garner, E. C., Campbell, C. S. & Mullins, R. D. Dynamic instability in a DNA-segregating prokaryotic actin homolog.Science306, 1021–1025 (2004).

    Article ADS PubMed CAS  Google Scholar 

  80. Garner, E. C., Campbell, C. S., Weibel, D. B. & Mullins, R. D. Reconstitution of DNA segregation driven by assembly of a prokaryotic actin homolog.Science315, 1270–1274 (2007).

    Article ADS PubMed PubMed Central CAS  Google Scholar 

  81. Derman, A. I. et al. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A.Mol. Microbiol.73, 534–552 (2009).

    Article PubMed PubMed Central CAS  Google Scholar 

  82. Rochlin, M. W., Dailey, M. E. & Bridgman, P. C. Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones.Mol. Biol. Cell10, 2309–2327 (1999).

    Article PubMed PubMed Central CAS  Google Scholar 

  83. Henson, J. H. et al. Two components of actin-based retrograde flow in sea urchin coelomocytes.Mol. Biol. Cell10, 4075–4090 (1999).

    Article PubMed PubMed Central CAS  Google Scholar 

  84. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network.J. Cell Biol.160, 409–421 (2003).

    Article PubMed PubMed Central CAS  Google Scholar 

  85. Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling.Nature Rev. Mol. Cell Biol.2, 138–145 (2001).

    Article CAS  Google Scholar 

  86. Svitkina, T. M., Verkhovsky, A. B. & Borisy, G. G. Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells.J. Struct. Biol.115, 290–303 (1995).

    Article PubMed CAS  Google Scholar 

  87. Chaudhuri, O., Parekh, S. H., Lam, W. A. & Fletcher, D. A. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells.Nature Methods6, 383–387 (2009).

    Article PubMed PubMed Central CAS  Google Scholar 

  88. Stachowiak, J. C. et al. Unilamellar vesicle formation and encapsulation by microfluidic jetting.Proc. Natl Acad. Sci. USA105, 4697–4702 (2008).

    Article ADS PubMed  Google Scholar 

Download references

Acknowledgements

We thank O. Chaudhuri, D. Richmond, V. Risca and other members of the Fletcher laboratory for discussion and assistance with this Review. We also benefited from interactions with the researchers and students in the 2009 Physiology course at the Marine Biological Laboratory, Woods Hole, Massachusetts. Work in our laboratories is supported by R01 grants from the National Institutes of Health (NIH) and by the Cell Propulsion Lab, an NIH Nanomedicine Development Center. We apologize to those colleagues whose work could not be cited because of space constraints.

Author information

Authors and Affiliations

  1. Bioengineering and Biophysics, University of California, Berkeley, 94720, California, USA

    Daniel A. Fletcher

  2. Physical Biosciences, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA

    Daniel A. Fletcher

  3. Cellular and Molecular Pharmacology, University of California, San Francisco, 94143, California, USA

    R. Dyche Mullins

Authors
  1. Daniel A. Fletcher
  2. R. Dyche Mullins

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available athtpp://www.nature.com/reprints.

Correspondence should be addressed to D.A.F. (fletch@berkeley.edu) or R.D.M. (dyche@mullinslab.ucsf.edu).

Rights and permissions

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp