Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Review Article
  • Published:

Finding the missing heritability of complex diseases

Naturevolume 461pages747–753 (2009)Cite this article

Abstract

Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, ‘missing’ heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Feasibility of identifying genetic variants by risk allele frequency and strength of genetic effect (odds ratio).

Similar content being viewed by others

Article26 August 2021

References

  1. Hardy, J. & Singleton, A. Genomewide association studies and human disease.N. Engl. J. Med.360, 1759–1768 (2009)

    Article CAS  Google Scholar 

  2. International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs.Nature449, 851–861 (2007)

  3. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.Proc. Natl Acad. Sci.106, 9362–9367 (2009)Comprehensive analysis of genomic annotations for disease-associated SNPs defined by GWAS, showing great majority of associated loci in intronic or intergenic regions of unknown function.

    Article ADS CAS  Google Scholar 

  4. Hindorff, L. A., Junkins, H. A., Mehta, J. P. & Manolio, T. A. A catalog of published genome-wide association studies. Available at 〈http://www.genome.gov/26525384〉 (accessed, 18 September 2009)

  5. Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies.Genet. Med.4, 45–61 (2002)

    Article CAS  Google Scholar 

  6. Todd, J. A. Statistical false positive or true disease pathway?Nature Genet.38, 731–733 (2006)

    Article CAS  Google Scholar 

  7. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families.Science261, 921–923 (1993)

    Article ADS CAS  Google Scholar 

  8. Lifton, R. P. Genetic dissection of human blood pressure variation: common pathways from rare phenotypes.Harvey Lect.100, 71–101 (2004)

    PubMed  Google Scholar 

  9. Altmüller, J., Palmer, L. J., Fischer, G., Scherb, H. & Wjst, M. Genome-wide scans of complex human diseases: true linkage is hard to find.Am. J. Hum. Genet.69, 936–950 (2001)

    Article  Google Scholar 

  10. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases.Science273, 1516–1517 (1996)

    Article ADS CAS  Google Scholar 

  11. Risch, N. J. Searching for genetic determinants in the new millennium.Nature405, 847–856 (2000)

    Article CAS  Google Scholar 

  12. Reich, D. E. & Lander, E. S. On the allelic spectrum of human disease.Trends Genet.17, 502–510 (2001)

    Article CAS  Google Scholar 

  13. Collins, F. S., Guyer, M. S. & Chakravarti, A. Variations on a theme: cataloging human DNA sequence variation.Science278, 1580–1581 (1997)

    Article ADS CAS  Google Scholar 

  14. Pritchard, J. K. Are rare variants responsible for susceptibility to common diseases?Am. J. Hum. Genet.69, 124–137 (2001)

    Article CAS  Google Scholar 

  15. Visscher, P. M. Sizing up human height variation.Nature Genet.40, 489–490 (2008)

    Article CAS  Google Scholar 

  16. Collins, F. S. 2005 William Allan Award address. No longer just looking under the lamppost.Am. J. Hum. Genet.79, 421–426 (2006)

    Article CAS  Google Scholar 

  17. Pearson, T. A. & Manolio, T. A. How to interpret a genome-wide association study.J. Am. Med. Assoc.299, 1335–1344 (2008)

    Article CAS  Google Scholar 

  18. Maher, B. Personal genomes: The case of the missing heritability.Nature456, 18–21 (2008)

    Article CAS  Google Scholar 

  19. Pritchard, J. K. & Cox, N. J. The allelic architecture of human disease genes: common disease-common variant.or not?Hum. Mol. Genet.11, 2417–2423 (2002)

    Article CAS  Google Scholar 

  20. Jakobsdottir, J., Gorin, M. B., Conley, Y. P., Ferrell, R. E. & Weeks, D. E. Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers.PLoS Genet.5, e1000337 (2009)

    Article  Google Scholar 

  21. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease.Nature Genet.40, 955–962 (2008)

    Article CAS  Google Scholar 

  22. Kathiresan, S. et al. Common variants at 30 loci contribute to polygenic dyslipidemia.Nature Genet.41, 56–65 (2009)

    Article CAS  Google Scholar 

  23. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes.Nature Genet.40, 638–645 (2008)

    Article CAS  Google Scholar 

  24. Ahmed S. et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2.Nature Genet.41, 585–590 (2009)

    Article ADS  Google Scholar 

  25. Lord, C., Cook, E. H., Leventhal, B. L. & Amaral, D. G. Autism spectrum disorders.Neuron28, 355–363 (2000)

    Article CAS  Google Scholar 

  26. Cooper, J. D. et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci.Nature Genet.40, 1399–1401 (2008)

    Article CAS  Google Scholar 

  27. Barrett J. C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes.Nature Genet.41, 703–707 (2009)

    Article  Google Scholar 

  28. Keller, M. C. & Miller, G. Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best?Behav. Brain Sci.29, 385–404 (2006)

    Article  Google Scholar 

  29. Gibson, G. & Wagner, G. Canalization in evolutionary genetics: a stabilizing theory?Bioessays22, 372–380 (2000)

    Article CAS  Google Scholar 

  30. Gibson, G. Decanalization and the origin of complex disease.Nature Rev. Genet.10, 134–140 (2009)

    Article CAS  Google Scholar 

  31. Campbell, M. C. & Tishkoff, S. A. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping.Annu. Rev. Genomics Hum. Genet.9, 403–433 (2008)

    Article CAS  Google Scholar 

  32. Lusis, A. J. & Pajukanta, P. A treasure trove for lipoprotein biology.Nature Genet.40, 129–130 (2008)

    Article CAS  Google Scholar 

  33. Zheng, W. et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1.Nature Genet.41, 324–328 (2009)

    Article CAS  Google Scholar 

  34. Yasuda, K. et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus.Nature Genet.40, 1092–1097 (2008)

    Article CAS  Google Scholar 

  35. Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population.Nature Genet.41, 35–46 (2009)

    Article CAS  Google Scholar 

  36. Falconer, D. S. & Mackay, T. F. C.Introduction to Quantitative Genetics Addison 123 (Wesley Longman Ltd, 1996)

    Google Scholar 

  37. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era–concepts and misconceptions.Nature Rev. Genet.9, 255–266 (2008)Detailed review of strengths, weaknesses and controversies in estimations of heritability from human, agricultural and experimental studies.

    Article CAS  Google Scholar 

  38. Visscher, P. M. et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings.PLoS Genet.2, e41 (2006)

    Article  Google Scholar 

  39. Meuwissen, T. H., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps.Genetics157, 1819–1829 (2001)

    CAS PubMed PubMed Central  Google Scholar 

  40. Lee, S. H., van der Werf, J. H., Hayes, B. J., Goddard, M. E. & Visscher, P. M. Predicting unobserved phenotypes for complex traits from whole-genome SNP data.PLoS Genet.4, e1000231 (2008)

    Article  Google Scholar 

  41. McCarthy, M. I. & Hirschhorn, J. N. Genome-wide association studies: potential next steps on a genetic journey.Hum. Mol. Genet.17 (R2). R156–R165 (2008)Insightful review of initial findings from GWAS, the heritability that they do and do not explain, and potential for progress from other GWAS, identification of rare variants, and studies of epigenetics and gene expression and function.

    Article CAS  Google Scholar 

  42. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges.Nature Rev. Genet.9, 356–369 (2008)

    Article CAS  Google Scholar 

  43. Mardis, E. R. The impact of next-generation sequencing technology on genetics.Trends Genet.24, 133–141 (2008)

    Article CAS  Google Scholar 

  44. Abecasis, G. R. The 1000 Genomes Project: analysis of pilot datasets.Biology of Genomes page 246 (Cold Spring Harbor Laboratory, 5–9 May 2009)

  45. Kotowski, I. K. et al. A spectrum ofPCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol.Am. J. Hum. Genet.78, 410–422 (2006)

    Article CAS  Google Scholar 

  46. Cohen, J. C. et al. Multiple rare variants inNPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels.Proc. Natl Acad. Sci. USA103, 1810–1815 (2006)

    Article ADS CAS  Google Scholar 

  47. Romeo, S. et al. Population-based resequencing ofANGPTL4 uncovers variations that reduce triglycerides and increase HDL.Nature Genet.39, 513–516 (2007)

    Article CAS  Google Scholar 

  48. Haiman, C. A. et al. Multiple regions within 8q24 independently affect risk for prostate cancer.Nature Genet.39, 638–644 (2007)

    Article CAS  Google Scholar 

  49. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants ofIFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes.Science324, 387–389 (2009)Four rare variants inIFIH1 independently lowering risk of type 1 diabetes were identified by sequencing exons and splice sites of 10 genes under GWA-defined peaks, demonstrating the power of intensive sequencing to identify potentially causative variants in follow-up of GWAS.

    Article ADS CAS  Google Scholar 

  50. Li, B. & Leal, S. M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data.Am. J. Hum. Genet.83, 311–321 (2008)

    Article CAS  Google Scholar 

  51. Crawford, M. H.Anthropological Genetics: Theory, Methods and Applications 341 (Cambridge Univ. Press, 2006)

    Book  Google Scholar 

  52. McCarroll, S. A. Extending genome-wide association studies to copy-number variation.Hum. Mol. Genet.17 (R2). R135–R142 (2008)

    Article CAS  Google Scholar 

  53. Scherer, S. W. et al. Challenges and standards in integrating surveys of structural variation.Nature Genet.39 (suppl.). S7–S15 (2007)

    Article CAS  Google Scholar 

  54. Kidd, J. M. et al. Mapping and sequencing of structural variation from eight human genomes.Nature453, 56–64 (2008)

    Article ADS CAS  Google Scholar 

  55. McCarroll, S. A. et al. Integrated detection and population-genetic analysis of SNPs and copy number variation.Nature Genet.40, 1166–1174 (2008)Initial map of CNVs demonstrating high proportion (>80%) of inter-individual differences in copy number differences due to common CNVs of MAF 5% or greater; >99% of CNVs probably derived from inheritance rather thande novo mutation; and most common diallelic CNVs in strong linkage disequilibrium with common SNPs.

    Article CAS  Google Scholar 

  56. de Vries, B. B. et al. Diagnostic genome profiling in mental retardation.Am. J. Hum. Genet.77, 606–616 (2005)

    Article CAS  Google Scholar 

  57. Sebat, J. et al. Strong association of de novo copy number mutations with autism.Science316, 445–449 (2007)

    Article ADS CAS  Google Scholar 

  58. Xu, B. et al. Strong association ofde novo copy number mutations with sporadic schizophrenia.Nature Genet.40, 880–885 (2008)

    Article CAS  Google Scholar 

  59. Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism.N. Engl. J. Med.358, 667–675 (2008)

    Article CAS  Google Scholar 

  60. Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia.Nature455, 232–236 (2008)

    Article ADS CAS  Google Scholar 

  61. Willer, C. J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation.Nature Genet.41, 25–34 (2009)

    Article CAS  Google Scholar 

  62. Abrahams, B. S. & Geschwind, D. H. Advances in autism genetics: on the threshold of a new neurobiology.Nature Rev. Genet.9, 341–355 (2008)

    Article CAS  Google Scholar 

  63. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation.Nature Genet.40, 1068–1075 (2008)

    Article CAS  Google Scholar 

  64. Thomas, A., Camp, N. J., Farnham, J. M., Allen-Brady, K. & Cannon-Albright, L. A. Shared genomic segment analysis. Mapping disease predisposition genes in extended pedigrees using SNP genotype assays.Ann. Hum. Genet.72, 279–287 (2008)

    Article CAS  Google Scholar 

  65. Roeder, K., Bacanu, S. A., Wasserman, L. & Devlin, B. Using linkage genome scans to improve power of association in genome scans.Am. J. Hum. Genet.78, 243–252 (2006)

    Article CAS  Google Scholar 

  66. MacLean, C. J., Sham, P. C. & Kendler, K. S. Joint linkage of multiple loci for a complex disorder.Am. J. Hum. Genet.53, 353–366 (1993)

    CAS PubMed PubMed Central  Google Scholar 

  67. Zhao, J., Jin, L. & Xiong, M. Test for interaction between two unlinked loci.Am. J. Hum. Genet.79, 831–845 (2006)

    Article CAS  Google Scholar 

  68. Waters, K. M. et al. Generalizability of associations from prostate cancer genome-wide association studies in multiple populations.Cancer Epidemiol. Biomarkers Prev.18, 1285–1289 (2009)

    Article CAS  Google Scholar 

  69. Clayton, D. G. Prediction and interaction in complex disease genetics: experience in type 1 diabetes.PLoS Genet.5, e1000540 (2009)

    Article  Google Scholar 

  70. Khoury, M. J. et al. The scientific foundation for personal genomics: recommendations from a National Institutes of Health-Centers for Disease Control and Prevention multidisciplinary workshop.Genet. Med.11, 559–567 (2009)

    Article CAS  Google Scholar 

  71. Pharoah, P. D., Antoniou, A. C., Easton, D. F. & Ponder, B. A. Polygenes, risk prediction, and targeted prevention of breast cancer.N. Engl. J. Med.358, 2796–2803 (2008)

    Article CAS  Google Scholar 

  72. Maller, J. et al. Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration.Nature Genet.38, 1055–1059 (2006)

    Article CAS  Google Scholar 

  73. International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN). Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants inITGAM,PXK,KIAA1542 and other loci.Nature Genet.40, 204–210 (2008)

  74. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes.Nature Genet.40, 638–645 (2008)

    Article CAS  Google Scholar 

  75. Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans.Nature Genet.40, 189–197 (2008)

    Article CAS  Google Scholar 

  76. Myocardial Infarction Genetics Consortium. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants.Nature Genet.41, 334–341 (2009)

  77. Prokopenko, I. et al. Variants inMTNR1B influence fasting glucose levels.Nature Genet.41, 77–81 (2009)

    Article CAS  Google Scholar 

  78. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia.Nature455, 237–241 (2008)

  79. Mefford, H. C. et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes.N. Engl. J. Med.359, 1685–1699 (2008)

    Article CAS  Google Scholar 

  80. Helbig, I. et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy.Nature Genet.41, 160–162 (2009)

    Article CAS  Google Scholar 

  81. Sharp, A. J. et al. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures.Nature Genet.40, 322–328 (2008)

    Article CAS  Google Scholar 

  82. Bassett, A. S., Marshall, C. R., Lionel, A. C., Chow, E. W. & Scherer, S. W. Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome.Hum. Mol. Genet.17, 4045–4053 (2008)

    Article CAS  Google Scholar 

  83. McCarroll, S. A. et al. Deletion polymorphism upstream ofIRGM associated with alteredIRGM expression and Crohn’s disease.Nature Genet.40, 1107–1112 (2008)

    Article CAS  Google Scholar 

  84. de Cid, R. et al. Deletion of the late cornified envelopeLCE3B andLCE3C genes as a susceptibility factor for psoriasis.Nature Genet.41, 211–215 (2009)

    Article CAS  Google Scholar 

Download references

Acknowledgements

This paper is inspired by the deliberations of an expert working group convened by the National Human Genome Research Institute (NHGRI) on 2–3 February 2009, to address the heritability unexplained in GWAS. The authors acknowledge the participation of J. C. Cohen, M. Daly and A. P. Feinberg in the workshop.

Author Contributions T.A.M., F.S.C., N.J.C., D.B.G., L.A.H., D.J.H., M.I.M. and E.M.R. planned and participated in the workshop; L.R.C., A.C., J.H.C., A.E.G., A.K., L.K., E.M., C.N.R., M.S., D.V., A.S.W., M.B., A.G.C., E.E.E., G.G., J.L.H., T.F.C.M., S.A.M. and P.M.V. participated in the workshop; T.A.M., P.M.V., G.G., M.I.M., E.E.E., T.F.C.M. and S.A.M. drafted the manuscript; F.S.C., N.J.C., D.B.G., L.A.H., D.J.H., E.M.R., L.R.C., A.C., J.H.C., A.P.R., A.E.G., A.K., L.K., E.M., C.N.R., M.S., D.V., A.S.W., M.B., A.G.C. and J.L.H. critically reviewed and revised the manuscript for content.

Author information

Authors and Affiliations

  1. National Human Genome Research Institute, Building 31, Room 4B09, 31 Center Drive, MSC 2152, Bethesda, Maryland 20892-2152, USA ,

    Teri A. Manolio & Alan E. Guttmacher

  2. National Institutes of Health, Building 1, Room 126, MSC 0148, Bethesda, Maryland 20892-0148, USA ,

    Francis S. Collins

  3. Departments of Medicine and Human Genetics, University of Chicago, Room A612, MC 6091, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA,

    Nancy J. Cox

  4. Duke University, The Institute for Genome Sciences and Policy (IGSP), Box 91009, Durham, North Carolina 27708, USA ,

    David B. Goldstein

  5. National Human Genome Research Institute, Office of Population Genomics, Suite 4076, MSC 9305, 5635 Fishers Lane, Rockville, Maryland 20892-9305, USA ,

    Lucia A. Hindorff & Erin M. Ramos

  6. Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA,

    David J. Hunter

  7. University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford OX3 7LJ, UK, and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK ,

    Mark I. McCarthy

  8. GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, USA ,

    Lon R. Cardon

  9. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway BRB579, Baltimore, Maryland 21205, USA ,

    Aravinda Chakravarti & David Valle

  10. Department of Medicine, Division of Digestive Diseases, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8019, USA,

    Judy H. Cho

  11. deCODE Genetics, Sturlugata 8, Reykjavik IS-101, Iceland ,

    Augustine Kong

  12. and Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544, USA,

    Leonid Kruglyak

  13. The Genome Center, Washington University School of Medicine, 4444 Forest Park Avenue, Campus Box 8501, Saint Louis, Missouri 63108, USA ,

    Elaine Mardis

  14. National Human Genome Research Institute, Center for Research on Genomics and Global Health, Building 12A, Room 4047, 12 South Drive, MSC 5635, Bethesda, Maryland 20892-5635, USA ,

    Charles N. Rotimi

  15. Department of Integrative Biology, University of California, 3060 Valley Life Science Building, Berkeley, California 94720-3140, USA,

    Montgomery Slatkin

  16. Stanford University, Health Research and Policy, Redwood Building, Room T204, 259 Campus Drive, Stanford, California 94305, USA ,

    Alice S. Whittemore

  17. Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, Michigan 48109-2029, USA,

    Michael Boehnke

  18. Department of Molecular Biology and Genetics, 107 Biotechnology Building, Cornell University, Ithaca, New York 14853, USA,

    Andrew G. Clark

  19. Department of Genome Sciences, Howard Hughes Medical Institute and University of Washington, 1705 North-East Pacific Street, Foege Building, Box 355065, Seattle, Washington 98195-5065, USA,

    Evan E. Eichler

  20. University of Queensland, School of Biological Sciences, Goddard Building, Saint Lucia Campus, Brisbane, Queensland 4072, Australia ,

    Greg Gibson

  21. Vanderbilt University, Center for Human Genetics Research, 519 Light Hall, Nashville, Tennessee 37232-0700, USA ,

    Jonathan L. Haines

  22. Department of Genetics, North Carolina State University, Box 7614, Raleigh, North Carolina 27695, USA,

    Trudy F. C. Mackay

  23. Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 0330, Boston, Massachusetts 02115, USA,

    Steven A. McCarroll

  24. Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia ,

    Peter M. Visscher

Authors
  1. Teri A. Manolio

    You can also search for this author inPubMed Google Scholar

  2. Francis S. Collins

    You can also search for this author inPubMed Google Scholar

  3. Nancy J. Cox

    You can also search for this author inPubMed Google Scholar

  4. David B. Goldstein

    You can also search for this author inPubMed Google Scholar

  5. Lucia A. Hindorff

    You can also search for this author inPubMed Google Scholar

  6. David J. Hunter

    You can also search for this author inPubMed Google Scholar

  7. Mark I. McCarthy

    You can also search for this author inPubMed Google Scholar

  8. Erin M. Ramos

    You can also search for this author inPubMed Google Scholar

  9. Lon R. Cardon

    You can also search for this author inPubMed Google Scholar

  10. Aravinda Chakravarti

    You can also search for this author inPubMed Google Scholar

  11. Judy H. Cho

    You can also search for this author inPubMed Google Scholar

  12. Alan E. Guttmacher

    You can also search for this author inPubMed Google Scholar

  13. Augustine Kong

    You can also search for this author inPubMed Google Scholar

  14. Leonid Kruglyak

    You can also search for this author inPubMed Google Scholar

  15. Elaine Mardis

    You can also search for this author inPubMed Google Scholar

  16. Charles N. Rotimi

    You can also search for this author inPubMed Google Scholar

  17. Montgomery Slatkin

    You can also search for this author inPubMed Google Scholar

  18. David Valle

    You can also search for this author inPubMed Google Scholar

  19. Alice S. Whittemore

    You can also search for this author inPubMed Google Scholar

  20. Michael Boehnke

    You can also search for this author inPubMed Google Scholar

  21. Andrew G. Clark

    You can also search for this author inPubMed Google Scholar

  22. Evan E. Eichler

    You can also search for this author inPubMed Google Scholar

  23. Greg Gibson

    You can also search for this author inPubMed Google Scholar

  24. Jonathan L. Haines

    You can also search for this author inPubMed Google Scholar

  25. Trudy F. C. Mackay

    You can also search for this author inPubMed Google Scholar

  26. Steven A. McCarroll

    You can also search for this author inPubMed Google Scholar

  27. Peter M. Visscher

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toTeri A. Manolio.

Ethics declarations

Competing interests

[COMPETING INTERESTS: L.R.C. is employed by a pharmaceutical company; A.K. is an employee of decode Genetics, a commercial company that participates in gene discoveries and the development of diagnostic tests. He also owns stocks of the company. E.E.E. is a Pacific Biosciences SAB member. A.C. is a member of the Affymetrix SAB, a potential conflict of interest overseen by Johns Hopkins University policies.]

Rights and permissions

About this article

Cite this article

Manolio, T., Collins, F., Cox, N.et al. Finding the missing heritability of complex diseases.Nature461, 747–753 (2009). https://doi.org/10.1038/nature08494

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

Genetics of complex diseases

Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases, but most confer quite small increments of risk. There seems to be a large component of heritability somehow evading detection. Possible explanations for this 'missing heritability' include great numbers of small-effect variants yet to be found, rare structural or epigenetic variation not detected by current genotyping technology and hard-to-detect gene–gene and gene–environment interactions. Teri Manolio and colleagues examine the research strategies most likely to distinguish between these and other possible explanations.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp