Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Active turnover modulates mature microRNA activity inCaenorhabditis elegans

Naturevolume 461pages546–549 (2009)Cite this article

Abstract

MicroRNAs (miRNAs) constitute a large class of regulatory RNAs that repress target messenger RNAs to control various biological processes1. Accordingly, miRNA biogenesis is highly regulated, controlled at both transcriptional and post-transcriptional levels2, and overexpression and underexpression of miRNAs are linked to various human diseases, particularly cancers1,3. As RNA concentrations are generally a function of biogenesis and turnover, active miRNA degradation might also modulate miRNA accumulation, and the plant 3′→5′ exonuclease SDN1 has been implicated in miRNA turnover4. Here we report that degradation of mature miRNAs in the nematodeCaenorhabditis elegans, mediated by the 5′→3′ exoribonuclease XRN-2, affects functional miRNA homeostasisin vivo. We recapitulate XRN-2-dependent miRNA turnover in larval lysates, where processing of precursor-miRNA (pre-miRNA) by Dicer, unannealing of the miRNA duplex and loading of the mature miRNA into the Argonaute protein of the miRNA-induced silencing complex (miRISC) are coupled processes that precede degradation of the mature miRNA. Although Argonaute:miRNA complexes are highly resistant to salt, larval lysate promotes efficient release of the miRNA, exposing it to degradation by XRN-2. Release and degradation can both be blocked by the addition of miRNA target RNA. Our results therefore suggest the presence of an additional layer of regulation of animal miRNA activity that might be important for rapid changes of miRNA expression profiles during developmental transitions and for the maintenance of steady-state concentrations of miRNAs. This pathway might represent a potential target for therapeutic intervention on miRNA expression.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Depletion ofxrn-2 increases mature miRNA levels and activity.
Figure 2:Coordination ofin vitro miRNA processing and turnover.
Figure 3:Target-mediated stabilization of mature miRNA.
Figure 4:Release of miRNA from miRISC.

Similar content being viewed by others

References

  1. Chang, T. C. & Mendell, J. T. microRNAs in vertebrate physiology and human disease.Annu. Rev. Genomics Hum. Genet.8, 215–239 (2007)

    Article CAS  Google Scholar 

  2. Ding, X. C., Weiler, J. & Großhans, H. Regulating the regulators: mechanisms controlling the maturation of microRNAs.Trends Biotechnol.27, 27–36 (2009)

    Article CAS  Google Scholar 

  3. Esquela-Kerscher, A. & Slack, F. J. Oncomirs—microRNAs with a role in cancer.Nature Rev. Cancer6, 259–269 (2006)

    Article CAS  Google Scholar 

  4. Ramachandran, V. & Chen, X. Degradation of microRNAs by a family of exoribonucleases inArabidopsis .Science321, 1490–1492 (2008)

    Article ADS CAS  Google Scholar 

  5. Büssing, I., Slack, F. J. & Großhans, H.let-7 microRNAs in development, stem cells and cancer.Trends Mol. Med.14, 400–409 (2008)

    Article  Google Scholar 

  6. Reinhart, B. J. et al. The 21-nucleotidelet-7 RNA regulates developmental timing inCaenorhabditis elegans .Nature403, 901–906 (2000)

    Article ADS CAS  Google Scholar 

  7. Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. TheC.elegans microRNAlet-7 binds to imperfectlet-7 complementary sites from thelin-41 3′UTR.Genes Dev.18, 132–137 (2004)

    Article CAS  Google Scholar 

  8. Bagga, S. et al. Regulation bylet-7 andlin-4 miRNAs results in target mRNA degradation.Cell122, 553–563 (2005)

    Article CAS  Google Scholar 

  9. Abbott, A. L. et al. Thelet-7 microRNA family membersmir-48,mir-84, andmir-241 function together to regulate developmental timing inCaenorhabditis elegans .Dev. Cell9, 403–414 (2005)

    Article CAS  Google Scholar 

  10. Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference inC.elegans .Nature427, 645–649 (2004)

    Article ADS CAS  Google Scholar 

  11. Chernyakov, I., Whipple, J. M., Kotelawala, L., Grayhack, E. J. & Phizicky, E. M. Degradation of several hypomodified mature tRNA species inSaccharomyces cerevisiae is mediated by Met22 and the 5′–3′ exonucleases Rat1 and Xrn1.Genes Dev.22, 1369–1380 (2008)

    Article CAS  Google Scholar 

  12. Weidhaas, J. B. et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy.Cancer Res.67, 11111–11116 (2007)

    Article CAS  Google Scholar 

  13. Gy, I. et al.Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors.Plant Cell19, 3451–3461 (2007)

    Article CAS  Google Scholar 

  14. Lee, R. C. & Ambros, V. An extensive class of small RNAs inCaenorhabditis elegans .Science294, 862–864 (2001)

    Article ADS CAS  Google Scholar 

  15. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing inC.elegans .Genes Dev.15, 2654–2659 (2001)

    Article CAS  Google Scholar 

  16. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that controlC.elegans developmental timing.Cell106, 23–34 (2001)

    Article CAS  Google Scholar 

  17. Großhans, H., Johnson, T., Reinert, K. L., Gerstein, M. & Slack, F. J. The temporal patterning microRNAlet-7 regulates several transcription factors at the larval to adult transition inC.elegans .Dev. Cell8, 321–330 (2005)

    Article  Google Scholar 

  18. Slack, F. J. et al. Thelin-41 RBCC gene acts in theC.elegans heterochronic pathway between thelet-7 regulatory RNA and the LIN-29 transcription factor.Mol. Cell5, 659–669 (2000)

    Article CAS  Google Scholar 

  19. Ding, X. C. & Großhans, H. Repression ofC.elegans microRNA targets at the initiation level of translation requires GW182 proteins.EMBO J.28, 213–222 (2009)

    Article CAS  Google Scholar 

  20. Stevens, A. & Poole, T. L. 5′-exonuclease-2 ofSaccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5′-exonuclease-1.J. Biol. Chem.270, 16063–16069 (1995)

    Article CAS  Google Scholar 

  21. Stevens, A. & Maupin, M. K. A 5′–3′ exoribonuclease of human placental nuclei: purification and substrate specificity.Nucleic Acids Res.15, 695–708 (1987)

    Article CAS  Google Scholar 

  22. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of thelet-7 small temporal RNA.Science293, 834–838 (2001)

    Article CAS  Google Scholar 

  23. Pillai, R. S. et al. Inhibition of translational initiation by let-7 microRNA in human cells.Science309, 1573–1576 (2005)

    Article ADS CAS  Google Scholar 

  24. Hutvagner, G., Simard, M. J., Mello, C. C. & Zamore, P. D. Sequence-specific inhibition of small RNA function.PLoS Biol.2, E98 (2004)

    Article  Google Scholar 

  25. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing argonaute silencing complex.Nature456, 209–213 (2008)

    Article ADS CAS  Google Scholar 

  26. Martinez, J. & Tuschl, T. RISC is a 5′ phosphomonoester-producing RNA endonuclease.Genes Dev.18, 975–980 (2004)

    Article CAS  Google Scholar 

  27. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress.Cell125, 1111–1124 (2006)

    Article CAS  Google Scholar 

  28. Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA.Cell131, 1273–1286 (2007)

    Article CAS  Google Scholar 

  29. Ding, X. C., Slack, F. J. & Großhans, H. The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation.Cell Cycle7, 3083–3090 (2008)

    Article CAS  Google Scholar 

  30. Pall, G. S. & Hamilton, A. J. Improved northern blot method for enhanced detection of small RNA.Nature Protocols3, 1077–1084 (2008)

    Article CAS  Google Scholar 

  31. Hager, D. A. & Burgess, R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit ofEscherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes.Anal. Biochem.109, 76–86 (1980)

    Article CAS  Google Scholar 

  32. Chatterjee, S. et al. An RNA-binding respiratory component mediates import of type II tRNAs intoLeishmania mitochondria.J. Biol. Chem.281, 25270–25277 (2006)

    Article CAS  Google Scholar 

  33. Mathy, N. et al. 5′-to-3′ exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA.Cell129, 681–692 (2007)

    Article CAS  Google Scholar 

  34. Kolb, F. A. et al. Human dicer: purification, properties, and interaction with PAZ PIWI domain proteins.Methods Enzymol.392, 316–336 (2005)

    Article CAS  Google Scholar 

  35. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.Cell123, 607–620 (2005)

    Article CAS  Google Scholar 

  36. Dziembowski, A., Lorentzen, E., Conti, E. & Séraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity.Nature Struct. Mol. Biol.14, 15–22 (2007)

    Article CAS  Google Scholar 

  37. Lee, M. H. & Schedl, T. Identification ofin vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required forC.elegans germ cell development.Genes Dev.15, 2408–2420 (2001)

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bühler and W. Filipowicz for critical comments on the manuscript; W. Filipowicz for plasmids; C. Mello and F. Slack forC. elegans strains; and A. Esquela-Kerscher for sharing Starfire probes for pre-miRNA detection. S.C. was supported by Marie Curie and EMBO long-term postdoctoral fellowships.

Author Contributions S.C. and H.G. designed the research. S.C. designed and performed the experiments. S.C. and H.G. analysed the experimental results and wrote the manuscript.

Author information

Authors and Affiliations

  1. Friedrich Miescher Institute for Biomedical Research, PO Box 2543, CH-4002 Basel, Switzerland ,

    Saibal Chatterjee & Helge Großhans

Authors
  1. Saibal Chatterjee
  2. Helge Großhans

Corresponding author

Correspondence toHelge Großhans.

Supplementary information

Supplementary information

This file contains Supplementary Notes, Supplementary Table S1 and Supplementary Figures S1-S18 with Legends. (PDF 4930 kb)

Rights and permissions

About this article

Cite this article

Chatterjee, S., Großhans, H. Active turnover modulates mature microRNA activity inCaenorhabditis elegans.Nature461, 546–549 (2009). https://doi.org/10.1038/nature08349

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Recycling silencing complexes

The class of small RNAs known as microRNAs play important roles in shaping gene expression profiles during development, by binding to and inhibiting, or silencing, the translation of certain messenger RNAs. It is thought that miRNAs were one factor responsible for the evolution of unicellular organisms into multicellular organisms. Saibal Chatterjee and Helge Groβhans report that after miRNAs have acted on a target mRNA and are released from the silencing complex, the ribonuclease XRN-2 promotes their degradation. In this way, XRN-2 acts as a homeostatic regulator of miRNA levels, which may be important in responding to new developmental cues.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp