Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

The changing phases of extrasolar planet CoRoT-1b

Naturevolume 459pages543–545 (2009)Cite this article

Abstract

Hot Jupiters are a class of extrasolar planet that orbit their parent stars at very short distances. They are expected to be tidally locked, which can lead to a large temperature difference between their daysides and nightsides. Infrared observations of eclipsing systems have yielded dayside temperatures for a number of transiting planets1,2,3,4,5. The day–night contrast of the transiting extrasolar planet HD 189733b was ‘mapped’ using infrared observations6,7. It is expected that the contrast between the daysides and nightsides of hot Jupiters is much higher at visual wavelengths, shorter than that of the peak emission, and could be further enhanced by reflected stellar light. Here we report the analysis of optical photometric data8 obtained over 36 planetary orbits of the transiting hot Jupiter CoRoT-1b. The data are consistent with the nightside hemisphere of the planet being entirely black, with the dayside flux dominating the optical phase curve. This means that at optical wavelengths the planet’s phase variation is just as we see it for the interior planets in the Solar System. The data allow for only a small fraction of reflected light, corresponding to a geometric albedo of <0.20.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Optical phase variation for CoRoT-1b centred on the planetary eclipse.
Figure 2:The optical planet–star contrast compared with models.

Similar content being viewed by others

References

  1. Charbonneau, D. et al. Detection of thermal emission from an extrasolar planet.Astrophys. J.626, 523–529 (2005)

    Article CAS ADS  Google Scholar 

  2. Deming, D., Seager, S., Richardson, L. J. & Harrington, J. Infrared radiation from an extrasolar planet.Nature434, 740–743 (2005)

    Article CAS ADS  Google Scholar 

  3. Harrington, J., Luszcz, S., Seager, S., Deming, D. & Richardson, L. The hottest planet.Nature447, 691–693 (2007)

    Article CAS ADS  Google Scholar 

  4. Sing, D. K. & Lopez-Morales, M. Ground-based secondary eclipse detection of the very-hot Jupiter OGLE-TR-56b.Astron. Astrophys.493, L31–L34 (2009)

    Article ADS  Google Scholar 

  5. de Mooij, E. J. W. & Snellen, I. A. G. Ground-based K-band detection of thermal emission from the exoplanet TrES-3b.Astron. Astrophys.493, L35–L38 (2009)

    Article ADS  Google Scholar 

  6. Knutson, H. A. et al. A map of the day–night contrast of the extrasolar planet HD 189733b.Nature447, 183–186 (2007)

    Article CAS ADS  Google Scholar 

  7. Knutson, H. et al. Multiwavelength constraints on the day-night circulation patterns of HD 189733b.Astrophys. J.690, 822–836 (2009)

    Article CAS ADS  Google Scholar 

  8. Auvergne, M., Bodin, P., Boisnard, L., Buey, J., Chaintreuil, S. & CoRoT team The CoRoT satellite in flight: description and performance.Astron. Astrophys. (in the press); preprint at 〈http://arxiv.org/abs/0901.2206〉 (2009)

  9. Barge, P. et al. Transiting exoplanets from the CoRoT space mission. I. CoRoT-Exo-1b: a low-density short-period planet around a G0V star.Astron. Astrophys.482, L17–L20 (2008)

    Article ADS  Google Scholar 

  10. Samadi, R. et al. Extraction of the photometric information: corrections. Preprint at 〈http://arXiv.org/astro-ph/0703354〉 (2007)

  11. Kurucz, R.ATLAS9 Stellar Atmosphere Programs and 2 km/s Grid. (Kurucz CD-ROM No. 13, Smithsonian Astrophysical Observatory, 1993)

    Google Scholar 

  12. Fortney, J., Lodders, K., Marley, M. & Freedman, R. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres.Astrophys. J.678, 1419–1435 (2008)

    Article CAS ADS  Google Scholar 

  13. Cooper, C. & Showman, A. Dynamic meteorology at the photosphere of HD 209458b.Astrophys. J.629, L45–L48 (2005)

    Article CAS ADS  Google Scholar 

  14. Showman, A. et al. Atmospheric circulation of hot Jupiters: coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b.Astrophys. J. (submitted); preprint at 〈http://arXiv.org/abs/0809.2089〉 (2008)

  15. Burrows, A., Hubeny, I., Budaj, J., Knutson, H. & Charbonneau, D. Theoretical spectral models of the planet HD 209458b with a thermal inversion and water emission bands.Astrophys. J.668, L171–L174 (2007)

    Article CAS ADS  Google Scholar 

  16. Grillmair, C. et al. Strong water absorption in the dayside emission spectrum of the planet HD 189733b.Nature456, 767–769 (2008)

    Article CAS ADS  Google Scholar 

  17. Knutson, H., Charbonneau, D., Burrows, A., O’Donovan, F. & Mandushev, G. Detection of a temperature inversion in the broadband infrared emission spectrum of TrES-4.Astrophys. J.691, 866–874 (2009)

    Article ADS  Google Scholar 

  18. Cowan, N., Agol, E. & Charbonneau, D. Hot nights on extrasolar planets: mid-infrared phase variations of hot Jupiters.Mon. Not. R. Astron. Soc.379, 641–646 (2007)

    Article CAS ADS  Google Scholar 

  19. Knutson, H., Charbonneau, D. & Allen, L. The 3.6–8.0 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion.Astrophys. J.673, 526–531 (2008)

    Article CAS ADS  Google Scholar 

  20. Harrington, J. et al. The phase-dependent infrared brightness of the extrasolar planet υ Andromedae b.Science314, 623–626 (2006)

    Article CAS ADS  Google Scholar 

  21. Burrows, A., Budaj, J. & Hubeny, I. Theoretical spectra and light curves of close-in extrasolar giant planets and comparison with data.Astrophys. J.678, 1436–1457 (2008)

    Article CAS ADS  Google Scholar 

  22. Collier Cameron, A., Horne, K., Penny, A. & Leigh, C. A search for starlight reflected from υ And’s innermost planet.Mon. Not. R. Astron. Soc.330, 187–204 (2002)

    Article ADS  Google Scholar 

  23. Leigh, C. et al. A search for starlight reflected from HD 75289b.Mon. Not. R. Astron. Soc.346, L16–L20 (2003)

    Article ADS  Google Scholar 

  24. Leigh, C., Collier Cameron, A., Horne, K., Penny, A. & James, D. A. new upper limit on the reflected starlight from τ Bootis b.Mon. Not. R. Astron. Soc.344, 1271–1282 (2003)

    Article ADS  Google Scholar 

  25. Rowe, J. F. et al. The very low albedo of an extrasolar planet: MOST space-based photometry of HD 209458.Astrophys. J.689, 1345–1353 (2008)

    Article ADS  Google Scholar 

  26. Cox, A. N. inAllen’s Astrophysical Quantities 4th edn (ed. Cox, A. N.) Ch. 1 (Athlone, 2000)

    Google Scholar 

  27. Seager, S., Whitney, B. A. & Sasselov, D. D. Photometric light curves and polarization of close-in extrasolar giant planets.Astrophys. J.540, 504–520 (2000)

    Article CAS ADS  Google Scholar 

  28. Green, D., Matthews, J., Seager, S. & Kuschnig, R. Scattered light from close-in extrasolar planets: prospects of detection with the MOST satellite.Astrophys. J.597, 590–601 (2003)

    Article ADS  Google Scholar 

  29. Hood, B., Wood, K., Seager, S. & Collier Cameron, A. Reflected light from three dimensional exoplanetary atmospheres and simulations of HD 209458b.Mon. Not. R. Astron. Soc.389, 257–269 (2008)

    Article CAS ADS  Google Scholar 

Download references

Acknowledgements

We thank the CoRoT team for making the CoRoT data, which forms the basis of this study, publicly available in a high-quality and comprehensible way. The CoRoT space mission, launched on 27 December 2006, was developed and is operated by the Centre National D’Études Spatial, with participation of the science programmes of the European Space Agency, the European Space Research and Technology Centre and the Research and Scientific Support Department, Austria, Belgium, Brazil, Germany and Spain. We thank R. Le Poole for discussions.

Author information

Authors and Affiliations

  1. Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands ,

    Ignas A. G. Snellen, Ernst J. W. de Mooij & Simon Albrecht

Authors
  1. Ignas A. G. Snellen

    You can also search for this author inPubMed Google Scholar

  2. Ernst J. W. de Mooij

    You can also search for this author inPubMed Google Scholar

  3. Simon Albrecht

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toIgnas A. G. Snellen.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data, Supplementary References Supplementary Table 1and Supplementary Figures 1-11 with Legends. (PDF 522 kb)

Rights and permissions

About this article

Cite this article

Snellen, I., de Mooij, E. & Albrecht, S. The changing phases of extrasolar planet CoRoT-1b.Nature459, 543–545 (2009). https://doi.org/10.1038/nature08045

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

Exoplanetary phases seen

It's nearly 400 years since Galileo first observed the changing phases of Venus, revealing the geometry of the Solar System. Now the first optical observations of the phases of an extrasolar planet — the hot Jupiter CoRoT-1b — are reported. CoRoT-1b was the first planet discovered by the CoRoT (COnvection ROtation and planetary Transits) satellite, and analysis of optical photometric data from the same satellite, representing 36 planetary orbits, now shows the permanent nightside hemisphere of the planet to be entirely black. The dayside flux, reflecting a small proportion of the incident stellar light, dominates the optical phase curve. This means that at optical wavelengths the planet's phase variation resembles what we see for the interior planets in the Solar System.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp