Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV

Naturevolume 458pages607–609 (2009)Cite this article

Abstract

Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium1, which is referred to as a ‘secondary source’. Positrons might also originate in objects such as pulsars2 and microquasars3 or through dark matter annihilation4, which would be ‘primary sources’. Previous statistically limited measurements5,6,7 of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref.8). Here we report a measurement of the positron fraction in the energy range 1.5–100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Calorimeter energy fraction, .
Figure 2:PAMELA positron fraction with other experimental data and with secondary production model.

Similar content being viewed by others

References

  1. Moskalenko, I. V. & Strong, A. W. Production and propagation of cosmic-ray positrons and electrons.Astrophys. J.493, 694–707 (1998)

    Article ADS CAS  Google Scholar 

  2. Atoian, A. M., Aharonian, F. A. & Volk, H. J. Electrons and positrons in the galactic cosmic rays.Phys. Rev. D52, 3265–3275 (1995)

    Article ADS  Google Scholar 

  3. Heinz, S. & Sunyaev, R. Cosmic rays from microquasars: A narrow component in the CR spectrum.Astron. Astrophys.390, 751–766 (2002)

    Article ADS  Google Scholar 

  4. Jungman, G., Kamionkowski, M. & Griest, K. Supersymmetric dark matter.Phys. Rep.267, 195–373 (1996)

    Article ADS  Google Scholar 

  5. Golden, R. L. et al. Measurement of the positron to electron ratio in the cosmic rays above 5 GeV.Astrophys. J.457, L103–L106 (1996)

    Article ADS CAS  Google Scholar 

  6. Barwick, S. W. et al. Measurements of the cosmic-ray positron fraction from 1 to 50 GeV.Astrophys. J.482, L191–L194 (1997)

    Article ADS CAS  Google Scholar 

  7. Aguilar, M. et al. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01.Phys. Lett. B646, 145–154 (2007)

    Article ADS CAS  Google Scholar 

  8. Chang, J. et al. An excess of cosmic ray electrons at energies of 300–800 GeV.Nature456, 362–365 (2008)

    Article ADS CAS  Google Scholar 

  9. Picozza, P. et al. PAMELA — A payload for antimatter matter exploration and light-nuclei astrophysics.Astropart. Phys.27, 296–315 (2007)

    Article ADS  Google Scholar 

  10. Delahaye, T. et al. Galactic secondary positron flux at the Earth. Preprint at 〈http://arXiv.org/abs/0809.5268v3〉 (2008)

  11. Boezio, M. et al. The cosmic-ray electron and positron spectra measured at 1 AU during solar minimum activity.Astrophys. J.532, 653–669 (2000)

    Article ADS CAS  Google Scholar 

  12. Alcaraz, J. et al. Leptons in near earth orbit.Phys. Lett. B484, 10–22 (2000)

    Article ADS CAS  Google Scholar 

  13. Clem, J. & Evenson, P. inProc. 30th Intl Cosmic Ray Conf. Vol. 1 (eds Caballero, R. et al.) 477–480 (Universidad Nacional Autónoma de México, 2008)

    Google Scholar 

  14. Aharonian, F. et al. First detection of a VHE gamma-ray spectral maximum from a cosmic source: HESS discovery of the Vela X nebula.Astron. Astrophys.448, L43–L47 (2006)

    Article ADS CAS  Google Scholar 

  15. Berezhko, E. G., Ksenofontov, L. T. & Völk, H. J. Emission of SN 1006 produced by accelerated cosmic rays.Astron. Astrophys.395, 943–953 (2002)

    Article ADS CAS  Google Scholar 

  16. Serpico, P. On the possible causes of a rise with energy of the cosmic ray positron fraction.Phys. Rev. D79, 021302 (2009)

    Article ADS  Google Scholar 

  17. Komatsu, E. et al. Five-year Wilkinson microwave anisotropy probe observations: Cosmological interpretation.Astrophys. J. Suppl. Ser.180, 330–376 (2009)

    Article ADS  Google Scholar 

  18. Servant, G. & Tait, T. M. P. Is the lightest Kaluza-Klein particle a viable dark matter candidate?Nucl. Phys. B650, 391–419 (2003)

    Article ADS  Google Scholar 

  19. Cheng, H. C., Feng, J. L. & Matchev, K. T. Kaluza-Klein dark matter.Phys. Rev. Lett.89, 211301 (2002)

    Article ADS  Google Scholar 

  20. Bertone, G., Hooper, D. & Silk, J. Particle dark matter: Evidence, candidates and constraints.Phys. Rep.405, 279–390 (2005)

    Article ADS CAS  Google Scholar 

  21. Adriani, O. et al. A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation.Phys. Rev. Lett.102, 051101 (2009)

    Article ADS CAS  Google Scholar 

  22. Cholis, I., Dobler, G., Finkbeiner, D. P., Goodenough, L. & Weiner, N. The case for a 700+ GeV WIMP: Cosmic ray spectra from ATIC and PAMELA. Preprint at 〈http://arXiv.org/abs/0811.3641v1〉 (2008)

  23. Bergström, L., Bringmann, T. & Edsjö, J. New positron spectral features from supersymmetric dark matter: A way to explain the PAMELA data?Phys. Rev. D78, 103520 (2008)

    Article ADS  Google Scholar 

  24. Donato, F., Maurin, D., Brun, P., Delahaye, T. & Salati, P. Constraints on WIMP dark matter from the high energy PAMELA data.Phys. Rev. Lett.102, 071301 (2009)

    Article ADS CAS  Google Scholar 

  25. Grajek, P., Kane, G., Phalen, D. J., Pierce, A. & Watson, A. Is the PAMELA positron excess winos? Preprint at 〈http://arXiv.org/abs/0812.4555v1〉 (2008)

  26. Grimani, C. Pulsar birthrate set by cosmic-ray positron observations.Astron. Astrophys.418, 649–653 (2004)

    Article ADS CAS  Google Scholar 

  27. Büsching, I., de Jager, O. C., Potgieter, M. S. & Venter, C. A cosmic-ray positron anisotropy due to two middle-aged, nearby pulsars?Astrophys. J.78, L39–L42 (2008)

    Article ADS  Google Scholar 

  28. Yuksel, H., Kistler, M. D. & Stanev, T. TeV gamma rays from Geminga and the origin of the GeV positron excess. Preprint at 〈http://arXiv.org/abs/0810.2784v2〉 (2008)

  29. Hooper, D., Blasi, P. & Serpico, P. D. Pulsars as the sources of high energy cosmic ray positrons.J. Cosmol. Astropart. Phys.01, 025 (2009)

    Article ADS  Google Scholar 

  30. Beatty, J. J. et al. New measurement of the cosmic-ray positron fraction from 5 to 15GeV.Phys. Rev. Lett.93, 241102 (2004)

    Article ADS CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Marinucci for discussions concerning statistical methods, D. Müller, S. Swordy and their group at University of Chicago, G. Bellettini and G. Chiarelli for discussions about the data analysis and L. Bergström for comments on the interpretation of our results. We acknowledge support from The Italian Space Agency (ASI), Deutsches Zentrum für Luftund Raumfahrt (DLR), The Swedish National Space Board, The Swedish Research Council, The Russian Space Agency (Roscosmos) and The Russian Foundation for Basic Research.

Author information

Authors and Affiliations

  1. Department of Physics, University of Florence, Via Sansone 1, I-50019 Sesto Fiorentino, Florence, Italy,

    O. Adriani, L. Bonechi & P. Spillantini

  2. INFN, Sezione di Florence, Via Sansone 1, I-50019 Sesto Fiorentino, Florence, Italy ,

    O. Adriani, L. Bonechi, M. Bongi, S. Bottai, P. Papini, S. B. Ricciarini, P. Spillantini & E. Vannuccini

  3. Department of Physics, University of Naples “Federico II”, Via Cintia, I-80126 Naples, Italy,

    G. C. Barbarino

  4. INFN, Sezione di Naples, Via Cintia, I-80126 Naples, Italy ,

    G. C. Barbarino, D. Campana, G. De Rosa & G. Osteria

  5. Lebedev Physical Institute, Leninsky Prospekt 53, RU-119991 Moscow, Russia ,

    G. A. Bazilevskaya, A. N. Kvashnin & Y. I. Stozhkov

  6. Department of Physics, University of Bari, Via Amendola 173, I-70126 Bari, Italy,

    R. Bellotti & A. Bruno

  7. INFN, Sezione di Bari, Via Amendola 173, I-70126 Bari, Italy ,

    R. Bellotti, A. Bruno & F. Cafagna

  8. INFN, Sezione di Trieste, Padriciano 99, I-34012 Trieste, Italy ,

    M. Boezio, V. Bonvicini, E. Mocchiutti, A. Vacchi, G. Zampa & N. Zampa

  9. Ioffe Physical Technical Institute, Polytekhnicheskaya 26, RU-194021 St Petersburg, Russia ,

    E. A. Bogomolov, S. Y. Krutkov & G. Vasilyev

  10. Department of Physics, KTH, AlbaNova University Centre, SE-10691 Stockholm, Sweden

    P. Carlson, P. Hofverberg & S. Orsi

  11. INFN, Sezione di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Rome, Italy ,

    M. Casolino, M. P. De Pascale, N. De Simone, V. Di Felice, V. Malvezzi, L. Marcelli, S. Orsi, P. Picozza & R. Sparvoli

  12. IFAC, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy ,

    G. Castellini

  13. Department of Physics, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Rome, Italy,

    M. P. De Pascale, N. De Simone, V. Di Felice, P. Picozza & R. Sparvoli

  14. Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, RU-11540 Moscow, Russia ,

    A. M. Galper, L. Grishantseva, S. V. Koldashov, A. Leonov, V. V. Mikhailov, S. A. Voronov, Y. T. Yurkin & V. G. Zverev

  15. Universität Siegen, D-57068 Siegen, Germany

    W. Menn & M. Simon

  16. Department of Physics and The Oskar Klein Centre for Cosmoparticle Physics, KTH, AlbaNova University Centre, SE-10691 Stockholm, Sweden

    M. Pearce

  17. INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati, Italy ,

    M. Ricci

Authors
  1. O. Adriani

    You can also search for this author inPubMed Google Scholar

  2. G. C. Barbarino

    You can also search for this author inPubMed Google Scholar

  3. G. A. Bazilevskaya

    You can also search for this author inPubMed Google Scholar

  4. R. Bellotti

    You can also search for this author inPubMed Google Scholar

  5. M. Boezio

    You can also search for this author inPubMed Google Scholar

  6. E. A. Bogomolov

    You can also search for this author inPubMed Google Scholar

  7. L. Bonechi

    You can also search for this author inPubMed Google Scholar

  8. M. Bongi

    You can also search for this author inPubMed Google Scholar

  9. V. Bonvicini

    You can also search for this author inPubMed Google Scholar

  10. S. Bottai

    You can also search for this author inPubMed Google Scholar

  11. A. Bruno

    You can also search for this author inPubMed Google Scholar

  12. F. Cafagna

    You can also search for this author inPubMed Google Scholar

  13. D. Campana

    You can also search for this author inPubMed Google Scholar

  14. P. Carlson

    You can also search for this author inPubMed Google Scholar

  15. M. Casolino

    You can also search for this author inPubMed Google Scholar

  16. G. Castellini

    You can also search for this author inPubMed Google Scholar

  17. M. P. De Pascale

    You can also search for this author inPubMed Google Scholar

  18. G. De Rosa

    You can also search for this author inPubMed Google Scholar

  19. N. De Simone

    You can also search for this author inPubMed Google Scholar

  20. V. Di Felice

    You can also search for this author inPubMed Google Scholar

  21. A. M. Galper

    You can also search for this author inPubMed Google Scholar

  22. L. Grishantseva

    You can also search for this author inPubMed Google Scholar

  23. P. Hofverberg

    You can also search for this author inPubMed Google Scholar

  24. S. V. Koldashov

    You can also search for this author inPubMed Google Scholar

  25. S. Y. Krutkov

    You can also search for this author inPubMed Google Scholar

  26. A. N. Kvashnin

    You can also search for this author inPubMed Google Scholar

  27. A. Leonov

    You can also search for this author inPubMed Google Scholar

  28. V. Malvezzi

    You can also search for this author inPubMed Google Scholar

  29. L. Marcelli

    You can also search for this author inPubMed Google Scholar

  30. W. Menn

    You can also search for this author inPubMed Google Scholar

  31. V. V. Mikhailov

    You can also search for this author inPubMed Google Scholar

  32. E. Mocchiutti

    You can also search for this author inPubMed Google Scholar

  33. S. Orsi

    You can also search for this author inPubMed Google Scholar

  34. G. Osteria

    You can also search for this author inPubMed Google Scholar

  35. P. Papini

    You can also search for this author inPubMed Google Scholar

  36. M. Pearce

    You can also search for this author inPubMed Google Scholar

  37. P. Picozza

    You can also search for this author inPubMed Google Scholar

  38. M. Ricci

    You can also search for this author inPubMed Google Scholar

  39. S. B. Ricciarini

    You can also search for this author inPubMed Google Scholar

  40. M. Simon

    You can also search for this author inPubMed Google Scholar

  41. R. Sparvoli

    You can also search for this author inPubMed Google Scholar

  42. P. Spillantini

    You can also search for this author inPubMed Google Scholar

  43. Y. I. Stozhkov

    You can also search for this author inPubMed Google Scholar

  44. A. Vacchi

    You can also search for this author inPubMed Google Scholar

  45. E. Vannuccini

    You can also search for this author inPubMed Google Scholar

  46. G. Vasilyev

    You can also search for this author inPubMed Google Scholar

  47. S. A. Voronov

    You can also search for this author inPubMed Google Scholar

  48. Y. T. Yurkin

    You can also search for this author inPubMed Google Scholar

  49. G. Zampa

    You can also search for this author inPubMed Google Scholar

  50. N. Zampa

    You can also search for this author inPubMed Google Scholar

  51. V. G. Zverev

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toP. Picozza.

Supplementary information

Supplementary Information

This file contains Supplementary Figures s1-s7 with Legends, Supplementary Methods, Supplementary Data and Supplementary References (PDF 324 kb)

Rights and permissions

About this article

Cite this article

Adriani, O., Barbarino, G., Bazilevskaya, G.et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV.Nature458, 607–609 (2009). https://doi.org/10.1038/nature07942

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

A hint of dark matter?

Cosmic ray positrons are known to be produced in interactions in the interstellar medium. As well as originating from this 'secondary source', positrons might also be generated in primary sources such as pulsars and microquasars — or by dark matter annihilation. A new measurement of the positron fraction in the cosmic radiation for the energy range 1.5–100 GeV has been made using data from the PAMELA satellite experiment. Previous measurements, made predominantly by balloon-borne instruments, yield a positron fraction compatible with 'secondary source' production from interactions between cosmic ray nuclei and interstellar matter. Above 10 GeV the new measurements deviate significantly from this expectation, pointing to the presence of a primary source, either a nearby astrophysical object or dark matter particle annihilations.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp