- Letter
- Published:
An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV
- O. Adriani1,2,
- G. C. Barbarino3,4,
- G. A. Bazilevskaya5,
- R. Bellotti6,7,
- M. Boezio8,
- E. A. Bogomolov9,
- L. Bonechi1,2,
- M. Bongi2,
- V. Bonvicini8,
- S. Bottai2,
- A. Bruno6,7,
- F. Cafagna7,
- D. Campana4,
- P. Carlson10,
- M. Casolino11,
- G. Castellini12,
- M. P. De Pascale11,13,
- G. De Rosa4,
- N. De Simone11,13,
- V. Di Felice11,13,
- A. M. Galper14,
- L. Grishantseva14,
- P. Hofverberg10,
- S. V. Koldashov14,
- S. Y. Krutkov9,
- A. N. Kvashnin5,
- A. Leonov14,
- V. Malvezzi11,
- L. Marcelli11,
- W. Menn15,
- V. V. Mikhailov14,
- E. Mocchiutti8,
- S. Orsi10,11,
- G. Osteria4,
- P. Papini2,
- M. Pearce16,
- P. Picozza11,13,
- M. Ricci17,
- S. B. Ricciarini2,
- M. Simon15,
- R. Sparvoli11,13,
- P. Spillantini1,2,
- Y. I. Stozhkov5,
- A. Vacchi8,
- E. Vannuccini2,
- G. Vasilyev9,
- S. A. Voronov14,
- Y. T. Yurkin14,
- G. Zampa8,
- N. Zampa8 &
- …
- V. G. Zverev14
Naturevolume 458, pages607–609 (2009)Cite this article
4939Accesses
149Altmetric
Abstract
Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium1, which is referred to as a ‘secondary source’. Positrons might also originate in objects such as pulsars2 and microquasars3 or through dark matter annihilation4, which would be ‘primary sources’. Previous statistically limited measurements5,6,7 of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref.8). Here we report a measurement of the positron fraction in the energy range 1.5–100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Moskalenko, I. V. & Strong, A. W. Production and propagation of cosmic-ray positrons and electrons.Astrophys. J.493, 694–707 (1998)
Atoian, A. M., Aharonian, F. A. & Volk, H. J. Electrons and positrons in the galactic cosmic rays.Phys. Rev. D52, 3265–3275 (1995)
Heinz, S. & Sunyaev, R. Cosmic rays from microquasars: A narrow component in the CR spectrum.Astron. Astrophys.390, 751–766 (2002)
Jungman, G., Kamionkowski, M. & Griest, K. Supersymmetric dark matter.Phys. Rep.267, 195–373 (1996)
Golden, R. L. et al. Measurement of the positron to electron ratio in the cosmic rays above 5 GeV.Astrophys. J.457, L103–L106 (1996)
Barwick, S. W. et al. Measurements of the cosmic-ray positron fraction from 1 to 50 GeV.Astrophys. J.482, L191–L194 (1997)
Aguilar, M. et al. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01.Phys. Lett. B646, 145–154 (2007)
Chang, J. et al. An excess of cosmic ray electrons at energies of 300–800 GeV.Nature456, 362–365 (2008)
Picozza, P. et al. PAMELA — A payload for antimatter matter exploration and light-nuclei astrophysics.Astropart. Phys.27, 296–315 (2007)
Delahaye, T. et al. Galactic secondary positron flux at the Earth. Preprint at 〈http://arXiv.org/abs/0809.5268v3〉 (2008)
Boezio, M. et al. The cosmic-ray electron and positron spectra measured at 1 AU during solar minimum activity.Astrophys. J.532, 653–669 (2000)
Alcaraz, J. et al. Leptons in near earth orbit.Phys. Lett. B484, 10–22 (2000)
Clem, J. & Evenson, P. inProc. 30th Intl Cosmic Ray Conf. Vol. 1 (eds Caballero, R. et al.) 477–480 (Universidad Nacional Autónoma de México, 2008)
Aharonian, F. et al. First detection of a VHE gamma-ray spectral maximum from a cosmic source: HESS discovery of the Vela X nebula.Astron. Astrophys.448, L43–L47 (2006)
Berezhko, E. G., Ksenofontov, L. T. & Völk, H. J. Emission of SN 1006 produced by accelerated cosmic rays.Astron. Astrophys.395, 943–953 (2002)
Serpico, P. On the possible causes of a rise with energy of the cosmic ray positron fraction.Phys. Rev. D79, 021302 (2009)
Komatsu, E. et al. Five-year Wilkinson microwave anisotropy probe observations: Cosmological interpretation.Astrophys. J. Suppl. Ser.180, 330–376 (2009)
Servant, G. & Tait, T. M. P. Is the lightest Kaluza-Klein particle a viable dark matter candidate?Nucl. Phys. B650, 391–419 (2003)
Cheng, H. C., Feng, J. L. & Matchev, K. T. Kaluza-Klein dark matter.Phys. Rev. Lett.89, 211301 (2002)
Bertone, G., Hooper, D. & Silk, J. Particle dark matter: Evidence, candidates and constraints.Phys. Rep.405, 279–390 (2005)
Adriani, O. et al. A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation.Phys. Rev. Lett.102, 051101 (2009)
Cholis, I., Dobler, G., Finkbeiner, D. P., Goodenough, L. & Weiner, N. The case for a 700+ GeV WIMP: Cosmic ray spectra from ATIC and PAMELA. Preprint at 〈http://arXiv.org/abs/0811.3641v1〉 (2008)
Bergström, L., Bringmann, T. & Edsjö, J. New positron spectral features from supersymmetric dark matter: A way to explain the PAMELA data?Phys. Rev. D78, 103520 (2008)
Donato, F., Maurin, D., Brun, P., Delahaye, T. & Salati, P. Constraints on WIMP dark matter from the high energy PAMELA data.Phys. Rev. Lett.102, 071301 (2009)
Grajek, P., Kane, G., Phalen, D. J., Pierce, A. & Watson, A. Is the PAMELA positron excess winos? Preprint at 〈http://arXiv.org/abs/0812.4555v1〉 (2008)
Grimani, C. Pulsar birthrate set by cosmic-ray positron observations.Astron. Astrophys.418, 649–653 (2004)
Büsching, I., de Jager, O. C., Potgieter, M. S. & Venter, C. A cosmic-ray positron anisotropy due to two middle-aged, nearby pulsars?Astrophys. J.78, L39–L42 (2008)
Yuksel, H., Kistler, M. D. & Stanev, T. TeV gamma rays from Geminga and the origin of the GeV positron excess. Preprint at 〈http://arXiv.org/abs/0810.2784v2〉 (2008)
Hooper, D., Blasi, P. & Serpico, P. D. Pulsars as the sources of high energy cosmic ray positrons.J. Cosmol. Astropart. Phys.01, 025 (2009)
Beatty, J. J. et al. New measurement of the cosmic-ray positron fraction from 5 to 15GeV.Phys. Rev. Lett.93, 241102 (2004)
Acknowledgements
We thank D. Marinucci for discussions concerning statistical methods, D. Müller, S. Swordy and their group at University of Chicago, G. Bellettini and G. Chiarelli for discussions about the data analysis and L. Bergström for comments on the interpretation of our results. We acknowledge support from The Italian Space Agency (ASI), Deutsches Zentrum für Luftund Raumfahrt (DLR), The Swedish National Space Board, The Swedish Research Council, The Russian Space Agency (Roscosmos) and The Russian Foundation for Basic Research.
Author information
Authors and Affiliations
Department of Physics, University of Florence, Via Sansone 1, I-50019 Sesto Fiorentino, Florence, Italy,
O. Adriani, L. Bonechi & P. Spillantini
INFN, Sezione di Florence, Via Sansone 1, I-50019 Sesto Fiorentino, Florence, Italy ,
O. Adriani, L. Bonechi, M. Bongi, S. Bottai, P. Papini, S. B. Ricciarini, P. Spillantini & E. Vannuccini
Department of Physics, University of Naples “Federico II”, Via Cintia, I-80126 Naples, Italy,
G. C. Barbarino
INFN, Sezione di Naples, Via Cintia, I-80126 Naples, Italy ,
G. C. Barbarino, D. Campana, G. De Rosa & G. Osteria
Lebedev Physical Institute, Leninsky Prospekt 53, RU-119991 Moscow, Russia ,
G. A. Bazilevskaya, A. N. Kvashnin & Y. I. Stozhkov
Department of Physics, University of Bari, Via Amendola 173, I-70126 Bari, Italy,
R. Bellotti & A. Bruno
INFN, Sezione di Bari, Via Amendola 173, I-70126 Bari, Italy ,
R. Bellotti, A. Bruno & F. Cafagna
INFN, Sezione di Trieste, Padriciano 99, I-34012 Trieste, Italy ,
M. Boezio, V. Bonvicini, E. Mocchiutti, A. Vacchi, G. Zampa & N. Zampa
Ioffe Physical Technical Institute, Polytekhnicheskaya 26, RU-194021 St Petersburg, Russia ,
E. A. Bogomolov, S. Y. Krutkov & G. Vasilyev
Department of Physics, KTH, AlbaNova University Centre, SE-10691 Stockholm, Sweden
P. Carlson, P. Hofverberg & S. Orsi
INFN, Sezione di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Rome, Italy ,
M. Casolino, M. P. De Pascale, N. De Simone, V. Di Felice, V. Malvezzi, L. Marcelli, S. Orsi, P. Picozza & R. Sparvoli
IFAC, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy ,
G. Castellini
Department of Physics, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Rome, Italy,
M. P. De Pascale, N. De Simone, V. Di Felice, P. Picozza & R. Sparvoli
Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, RU-11540 Moscow, Russia ,
A. M. Galper, L. Grishantseva, S. V. Koldashov, A. Leonov, V. V. Mikhailov, S. A. Voronov, Y. T. Yurkin & V. G. Zverev
Universität Siegen, D-57068 Siegen, Germany
W. Menn & M. Simon
Department of Physics and The Oskar Klein Centre for Cosmoparticle Physics, KTH, AlbaNova University Centre, SE-10691 Stockholm, Sweden
M. Pearce
INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati, Italy ,
M. Ricci
- O. Adriani
You can also search for this author inPubMed Google Scholar
- G. C. Barbarino
You can also search for this author inPubMed Google Scholar
- G. A. Bazilevskaya
You can also search for this author inPubMed Google Scholar
- R. Bellotti
You can also search for this author inPubMed Google Scholar
- M. Boezio
You can also search for this author inPubMed Google Scholar
- E. A. Bogomolov
You can also search for this author inPubMed Google Scholar
- L. Bonechi
You can also search for this author inPubMed Google Scholar
- M. Bongi
You can also search for this author inPubMed Google Scholar
- V. Bonvicini
You can also search for this author inPubMed Google Scholar
- S. Bottai
You can also search for this author inPubMed Google Scholar
- A. Bruno
You can also search for this author inPubMed Google Scholar
- F. Cafagna
You can also search for this author inPubMed Google Scholar
- D. Campana
You can also search for this author inPubMed Google Scholar
- P. Carlson
You can also search for this author inPubMed Google Scholar
- M. Casolino
You can also search for this author inPubMed Google Scholar
- G. Castellini
You can also search for this author inPubMed Google Scholar
- M. P. De Pascale
You can also search for this author inPubMed Google Scholar
- G. De Rosa
You can also search for this author inPubMed Google Scholar
- N. De Simone
You can also search for this author inPubMed Google Scholar
- V. Di Felice
You can also search for this author inPubMed Google Scholar
- A. M. Galper
You can also search for this author inPubMed Google Scholar
- L. Grishantseva
You can also search for this author inPubMed Google Scholar
- P. Hofverberg
You can also search for this author inPubMed Google Scholar
- S. V. Koldashov
You can also search for this author inPubMed Google Scholar
- S. Y. Krutkov
You can also search for this author inPubMed Google Scholar
- A. N. Kvashnin
You can also search for this author inPubMed Google Scholar
- A. Leonov
You can also search for this author inPubMed Google Scholar
- V. Malvezzi
You can also search for this author inPubMed Google Scholar
- L. Marcelli
You can also search for this author inPubMed Google Scholar
- W. Menn
You can also search for this author inPubMed Google Scholar
- V. V. Mikhailov
You can also search for this author inPubMed Google Scholar
- E. Mocchiutti
You can also search for this author inPubMed Google Scholar
- S. Orsi
You can also search for this author inPubMed Google Scholar
- G. Osteria
You can also search for this author inPubMed Google Scholar
- P. Papini
You can also search for this author inPubMed Google Scholar
- M. Pearce
You can also search for this author inPubMed Google Scholar
- P. Picozza
You can also search for this author inPubMed Google Scholar
- M. Ricci
You can also search for this author inPubMed Google Scholar
- S. B. Ricciarini
You can also search for this author inPubMed Google Scholar
- M. Simon
You can also search for this author inPubMed Google Scholar
- R. Sparvoli
You can also search for this author inPubMed Google Scholar
- P. Spillantini
You can also search for this author inPubMed Google Scholar
- Y. I. Stozhkov
You can also search for this author inPubMed Google Scholar
- A. Vacchi
You can also search for this author inPubMed Google Scholar
- E. Vannuccini
You can also search for this author inPubMed Google Scholar
- G. Vasilyev
You can also search for this author inPubMed Google Scholar
- S. A. Voronov
You can also search for this author inPubMed Google Scholar
- Y. T. Yurkin
You can also search for this author inPubMed Google Scholar
- G. Zampa
You can also search for this author inPubMed Google Scholar
- N. Zampa
You can also search for this author inPubMed Google Scholar
- V. G. Zverev
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toP. Picozza.
Supplementary information
Supplementary Information
This file contains Supplementary Figures s1-s7 with Legends, Supplementary Methods, Supplementary Data and Supplementary References (PDF 324 kb)
PowerPoint slides
Rights and permissions
About this article
Cite this article
Adriani, O., Barbarino, G., Bazilevskaya, G.et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV.Nature458, 607–609 (2009). https://doi.org/10.1038/nature07942
Received:
Accepted:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
STCF conceptual design report (Volume 1): Physics & detector
- M. Achasov
- X. C. Ai
- Y. B. Zuo
Frontiers of Physics (2024)
Discovery of a radiation component from the Vela pulsar reaching 20 teraelectronvolts
- F. Aharonian
- F. Ait Benkhali
- D. A. Smith
Nature Astronomy (2023)
Collisional positron acoustic soliton and double layer in an unmagnetized plasma having multi-species
- Shahrina Akter
- M. G. Hafez
Scientific Reports (2022)
Gamma-ray haloes around pulsars as the key to understanding cosmic-ray transport in the Galaxy
- Rubén López-Coto
- Emma de Oña Wilhelmi
- Jim Hinton
Nature Astronomy (2022)
Thermal Leptophilic Light Vector Dark Matter with Spinor Mediator and Muon (g-2) Anomaly
- Seyed Yaser Ayazi
- Ahmad Mohamadnejad
International Journal of Theoretical Physics (2022)