- Article
- Published:
Whales originated from aquatic artiodactyls in the Eocene epoch of India
Naturevolume 450, pages1190–1194 (2007)Cite this article
10kAccesses
288Altmetric
Abstract
Although the first ten million years of whale evolution are documented by a remarkable series of fossil skeletons, the link to the ancestor of cetaceans has been missing. It was known that whales are related to even-toed ungulates (artiodactyls), but until now no artiodactyls were morphologically close to early whales. Here we show that the Eocene south Asian raoellid artiodactyls are the sister group to whales. The raoellidIndohyus is similar to whales, and unlike other artiodactyls, in the structure of its ears and premolars, in the density of its limb bones and in the stable-oxygen-isotope composition of its teeth. We also show that a major dietary change occurred during the transition from artiodactyls to whales and that raoellids were aquatic waders. This indicates that aquatic life in this lineage occurred before the origin of the order Cetacea.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Milinkovitch, M. C., Bérubé, M. & Palsbøl, P. J. inThe Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea (ed. Thewissen, J. G. M.) 113–131 (Plenum, New York, 1998)
Nikaido, M., Rooney, A. P. & Okada, N. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: Hippopotamuses are the closest extant relatives of whales.Proc. Natl Acad. Sci. USA96, 10261–10266 (1999)
Gatesy, J. & O’Leary, M. A. Deciphering whale origins with molecules and fossils.Trends Ecol. Evol.16, 562–570 (2001)
Boisserie, J.-R., Lihoreau, F. & Brunet, M. Origins of Hippopotamidae (Mammalia, Cetartiodactyla): towards resolution.Zool. Scr.34, 119–143 (2005)
Thewissen, J. G. M., Williams, E. M., Roe, L. J. & Hussain, S. T. Skeletons of terrestrial cetaceans and the relationships of whales to artiodactyls.Nature413, 277–281 (2001)
Theodor, J. M. & Foss, S. E. Deciduous dentitions of Eocene cebochoerid artiodactyls and cetartiodactyl relationships.J. Mammal. Evol.12, 161–181 (2005)
O’Leary, M. A. inThe Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea (ed. Thewissen, J. G. M.) 133–161 (Plenum, New York, 1998)
Boisserie, J.-R., Lihoreau, F. & Brunet, M. The position of Hippopotamidae within Cetartiodactyla.Proc. Natl Acad. Sci. USA102, 1537–1541 (2005)
Geisler, J. H. & Uhen, M. D. Morphological support for a close relationship between hippos and whales.J. Vertebr. Paleontol.23, 991–996 (2003)
Geisler, J. H. & Uhen, M. D. Phylogenetic relationships of extinct Cetartiodactyls: results of simultaneous analyses of molecular, morphological, and stratigraphic data.J. Mammal. Evol.12, 145–160 (2005)
Ranga Rao, A. New mammals from Murree (Kalakot zone) of the foot-hills near Kalakot, J & K State.J. Geol. Soc. India12, 125–134 (1971)
Ranga Rao, A. & Misra, V. N. On the new Eocene mammal localities in the Himalayan foot-hills.Himalayan Geol.11, 422–428 (1981)
Kumar, K. & Sahni, A. Eocene mammals from the Upper Subathu Group, Kashmir Himalaya, India.J. Vertebr. Paleontol.5, 153–168 (1985)
Thewissen, J. G. M., Williams, E. M. & Hussain, S. T. Eocene mammal faunas from northern Indo-Pakistan.J. Vertebr. Paleontol.21, 347–366 (2001)
Luo, Z. inThe Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea (ed. Thewissen, J. G. M.) 269–301 (Plenum, New York, 1998)
Luo, Z. & Gingerich, P. D. Terrestrial Mesonychia to aquatic Cetacea: transformation of the basicranium and evolution of hearing in whales.Univ. Mich. Pap. Paleontol.31, 1–98 (1999)
Thewissen, J. G. M & Williams, E. M. The early radiations of Cetacea (Mammalia): evolutionary pattern and developmental correlations.Annu. Rev. Ecol. Syst.33, 73–90 (2002)
O’Leary, M. A. & Uhen, M. D. The time of origin of whales and the role of behavioral changes in the terrestrial–aquatic transition.Paleobiology25, 534–556 (1999)
Nummela, S., Hussain, S. T. & Thewissen, J. G. M. Cranial anatomy of Pakicetidae (Cetacea, Mammalia).J. Vertebr. Paleontol.26, 746–759 (2006)
Gray, N. M., Kainec, K., Madar, S., Tomko, L. & Wolfe, S. Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans.Anat. Rec.: Adv. Int. Anat. Evol. Biol.290, 638–653 (2007)
Madar, S. I. The postcranial skeleton of early Eocene pakicetid cetaceans.J. Paleontol.81, 176–200 (2007)
Roe, L. J. et al. inThe Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea (ed. Thewissen, J. G. M.) 399–422 (Plenum, New York, 1998)
Clementz, M. T., Goswami, A., Gingerich, P. D. & Koch, P. L. Isotopic records from early whales and sea cows: contrasting patterns of ecological transition.J. Vertebr. Paleontol.26, 355–370 (2006)
Francillon-Vieillot, H. et al. inSkeletal Biomineralization Patterns, Processes, and Evolutionary Trends (ed. Carter, J. G.) 471–530 (Van Nostrand Reinhold, New York, 1990)
de Buffrénil, V., Ricqlès, A., Ray, C. E. & Domning, D. P. Bone histology of the ribs of the archaeocetes (Mammalia: Cetacea).J. Vertebr. Paleontol.10, 455–466 (1990)
Kaiser, H. E. Untersuchungen zur vergleichenden Osteologie der Fossilen und rezenten Pachyostosen.Palaeontographica A114, 113–196 (1960)
Domning, D. P. & de Buffrénil, V. Hydrostasis in the Sirenia: quantitative data and functional interpretations.Mar. Mamm. Sci.7, 331–368 (1991)
Fish, F. E. & Stein, B. R. Functional correlates of differences in bone density among terrestrial and aquatic genera in the family Mustelidae (Mammalia).Zoomorphology110, 339–345 (1991)
Wall, W. P. The correlation between high limb-bone density and aquatic habitats in recent mammals.J. Paleontol.57, 197–207 (1983)
Taylor, M. A. Functional significance of bone ballast in the evolution of buoyancy control strategies by aquatic tetrapods.Histor. Biol14, 15–31 (2000)
Koch, P. L., Tuross, N. & Fogel, M. L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxyapatite.J. Archaeol. Sci.24, 417–429 (1997)
Kohn, M. J. Predicting animal δ18O: accounting for diet and physiological adaptation.Geochim. Cosmochim. Acta60, 4811–4829 (1996)
Clementz, M. T. & Koch, P. L. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel.Oecologia129, 461–472 (2001)
Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jaeger, J.-J. Isotopic biogeochemistry (13C,18O) of mammalian enamel from African Pleistocene hominid sites.Palaios11, 306–318 (1996)
Bryant, J. D. & Froelich, P. N. A model of oxygen isotope fractionation in body water of large mammals.Geochim. Cosmochim. Acta59, 4523–4537 (1995)
Jim, S., Ambrose, S. H. & Evershed, R. P. Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: Implications for their use in palaeodietary reconstruction.Geochim. Cosmochim. Acta68, 61–72 (2004)
Cloern, J. E., Canuel, E. A. & Harris, D. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system.Limnol. Oceanogr.47, 713–729 (2002)
Osmond, C. B., Valaane, N., Haslam, S. M., Uotila, P. & Roksandic, Z. Comparisons of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland; some implications for photosynthetic processes in aquatic plants.Oecologia50, 117–124 (1981)
O’Leary, M. H. Carbon isotopes and photosynthesis.Bioscience38, 328–336 (1988)
Dubost, G. Un aperçu sur l’écologie du chevrotain africainHyemoschus aquaticus Ogilby, artiodactyle tragulide.Mammalia42, 1–62 (1978)
Ducrocq, S. The late Eocene Anthracotheriidae (Mammalia, Artiodactyla) from Thailand.Palaeontographica A252, 93–140 (1999)
Ducrocq, S. Unusual dental morphologies in late Eocene anthracotheres (Artiodactyla, Mammalia) from Thailand: dental anomalies and extreme variations.N. Jb. Geol. Paläont. MH4, 199–212 (1999)
Suteethorn, V., Buffetaut, E., Helmcke-Ingavat, R., Jaeger, J. J. & Jongkanjanasoontorn, Y. Oldest known Tertiary mammals from South East Asia: middle Eocene primate and anthracotheres from Thailand.N. Jb. Geol. Paläont. MH9, 563–570 (1988)
Colbert, E. H. Fossil mammals from Burma.Am. Mus. Nat. Hist. Bull.74, 419–424 (1938)
Brunet, M. M. Découverte d’un crâne d’Anthracotheriidae,Microbunodon minimum (Cuvier), á La Milloque (Lot-et-Garonne).C. R. Acad. Sci. Paris267, 835–838 (1968)
Lihoreau, F., Blondel, C., Barry, J. & Brunet, M. A new species of the genusMicrobunodon (Anthracotheriidae, Artiodactyla) from the Miocene of Pakistan: genus revision, phylogenetic relationships and palaeobiogeography.Zool. Scr.33, 97–115 (2004)
Bajpai, S. et al. Early Eocene land mammals from Vastan Lignite Mine, District Surat, Gujarat, western India.J. Palaeontol. Soc. India50, 101–113 (2005)
West, R. M. Middle Eocene large mammal assemblage with Tethyan affinities, Ganda Kas region, Pakistan.J. Paleontol.54, 508–533 (1980)
Acknowledgements
We thank the late F. Obergfell for presenting us with the sediment blocks containingIndohyus fossils collected by A. Ranga Rao for preparation and study; D. S. N. Raju and N. Raju for facilitating our research; B. Armfield, R. Conley and A. Maas for fossil preparation; J. Dillard for preparingFig. 5; and J. Geisler and J. Theodor for providing additional information about their cladistic analyses. Laboratory research was funded by the National Science Foundation (NSF) – Earth Sciences (grants to J.G.M.T. and M.T.C.). Collaborative work was funded by the Indian Department of Science and Technology (to S.B.) and the NSF – International Division (to J.G.M.T.) under the Indo-US Scientific Cooperation Program. Laboratory analyses were supported by the Skeletal Biology Research Focus Area of Northeastern Ohio Universities College of Medicine.
Author Contributions J.G.M.T. was responsible for anatomical and systematic study, and scientific synthesis, L.N.C. for systematic and bone density study, M.T.C. for the study of stable isotopes, and S.B. and B.N.T. for geological study and collecting ofIndohyus and comparative fossil samples.
Author information
Authors and Affiliations
Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA,
J. G. M. Thewissen & Lisa Noelle Cooper
School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, USA,
Lisa Noelle Cooper
Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, USA,
Mark T. Clementz
Department of Earth Sciences, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India,
Sunil Bajpai
Wadia Institute of Himalayan Geology, Dehra Dun, Uttarakhand 248 001, India,
B. N. Tiwari
- J. G. M. Thewissen
You can also search for this author inPubMed Google Scholar
- Lisa Noelle Cooper
You can also search for this author inPubMed Google Scholar
- Mark T. Clementz
You can also search for this author inPubMed Google Scholar
- Sunil Bajpai
You can also search for this author inPubMed Google Scholar
- B. N. Tiwari
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJ. G. M. Thewissen.
Supplementary information
Supplementary Information
The file contains Supplementary Methods, Supplementary Results, Supplementary Tables 1-5 and additional references. (PDF 1088 kb)
Rights and permissions
About this article
Cite this article
Thewissen, J., Cooper, L., Clementz, M.et al. Whales originated from aquatic artiodactyls in the Eocene epoch of India.Nature450, 1190–1194 (2007). https://doi.org/10.1038/nature06343
Received:
Accepted:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative