Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Whales originated from aquatic artiodactyls in the Eocene epoch of India

Naturevolume 450pages1190–1194 (2007)Cite this article

Abstract

Although the first ten million years of whale evolution are documented by a remarkable series of fossil skeletons, the link to the ancestor of cetaceans has been missing. It was known that whales are related to even-toed ungulates (artiodactyls), but until now no artiodactyls were morphologically close to early whales. Here we show that the Eocene south Asian raoellid artiodactyls are the sister group to whales. The raoellidIndohyus is similar to whales, and unlike other artiodactyls, in the structure of its ears and premolars, in the density of its limb bones and in the stable-oxygen-isotope composition of its teeth. We also show that a major dietary change occurred during the transition from artiodactyls to whales and that raoellids were aquatic waders. This indicates that aquatic life in this lineage occurred before the origin of the order Cetacea.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Osteology ofIndohyus and cross-sections of long bones of Eocene cetartiodactyls.
Figure 2:Phylogeny of artiodactyls, cetaceans and archaic ungulates.
Figure 3:Plot of the ratio of the thickness of the medial tympanic wall to that of the lateral tympanic wall against the natural logarithm of the width across occipital condyles, showing that the ratio inIndohyus is similar to that in cetaceans.
Figure 4:Bivariate plot of δ18O and δ13C values for enamel samples of early and middle Eocene mammals from India and Pakistan.
Figure 5:Skeletal reconstruction ofIndohyus.

Similar content being viewed by others

References

  1. Milinkovitch, M. C., Bérubé, M. & Palsbøl, P. J. inThe Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea (ed. Thewissen, J. G. M.) 113–131 (Plenum, New York, 1998)

    Book  Google Scholar 

  2. Nikaido, M., Rooney, A. P. & Okada, N. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: Hippopotamuses are the closest extant relatives of whales.Proc. Natl Acad. Sci. USA96, 10261–10266 (1999)

    Article ADS CAS  Google Scholar 

  3. Gatesy, J. & O’Leary, M. A. Deciphering whale origins with molecules and fossils.Trends Ecol. Evol.16, 562–570 (2001)

    Article  Google Scholar 

  4. Boisserie, J.-R., Lihoreau, F. & Brunet, M. Origins of Hippopotamidae (Mammalia, Cetartiodactyla): towards resolution.Zool. Scr.34, 119–143 (2005)

    Article  Google Scholar 

  5. Thewissen, J. G. M., Williams, E. M., Roe, L. J. & Hussain, S. T. Skeletons of terrestrial cetaceans and the relationships of whales to artiodactyls.Nature413, 277–281 (2001)

    Article ADS CAS  Google Scholar 

  6. Theodor, J. M. & Foss, S. E. Deciduous dentitions of Eocene cebochoerid artiodactyls and cetartiodactyl relationships.J. Mammal. Evol.12, 161–181 (2005)

    Article  Google Scholar 

  7. O’Leary, M. A. inThe Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea (ed. Thewissen, J. G. M.) 133–161 (Plenum, New York, 1998)

    Book  Google Scholar 

  8. Boisserie, J.-R., Lihoreau, F. & Brunet, M. The position of Hippopotamidae within Cetartiodactyla.Proc. Natl Acad. Sci. USA102, 1537–1541 (2005)

    Article ADS CAS  Google Scholar 

  9. Geisler, J. H. & Uhen, M. D. Morphological support for a close relationship between hippos and whales.J. Vertebr. Paleontol.23, 991–996 (2003)

    Article  Google Scholar 

  10. Geisler, J. H. & Uhen, M. D. Phylogenetic relationships of extinct Cetartiodactyls: results of simultaneous analyses of molecular, morphological, and stratigraphic data.J. Mammal. Evol.12, 145–160 (2005)

    Article  Google Scholar 

  11. Ranga Rao, A. New mammals from Murree (Kalakot zone) of the foot-hills near Kalakot, J & K State.J. Geol. Soc. India12, 125–134 (1971)

    Google Scholar 

  12. Ranga Rao, A. & Misra, V. N. On the new Eocene mammal localities in the Himalayan foot-hills.Himalayan Geol.11, 422–428 (1981)

    Google Scholar 

  13. Kumar, K. & Sahni, A. Eocene mammals from the Upper Subathu Group, Kashmir Himalaya, India.J. Vertebr. Paleontol.5, 153–168 (1985)

    Article  Google Scholar 

  14. Thewissen, J. G. M., Williams, E. M. & Hussain, S. T. Eocene mammal faunas from northern Indo-Pakistan.J. Vertebr. Paleontol.21, 347–366 (2001)

    Article  Google Scholar 

  15. Luo, Z. inThe Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea (ed. Thewissen, J. G. M.) 269–301 (Plenum, New York, 1998)

    Book  Google Scholar 

  16. Luo, Z. & Gingerich, P. D. Terrestrial Mesonychia to aquatic Cetacea: transformation of the basicranium and evolution of hearing in whales.Univ. Mich. Pap. Paleontol.31, 1–98 (1999)

    Google Scholar 

  17. Thewissen, J. G. M & Williams, E. M. The early radiations of Cetacea (Mammalia): evolutionary pattern and developmental correlations.Annu. Rev. Ecol. Syst.33, 73–90 (2002)

    Article  Google Scholar 

  18. O’Leary, M. A. & Uhen, M. D. The time of origin of whales and the role of behavioral changes in the terrestrial–aquatic transition.Paleobiology25, 534–556 (1999)

    Article  Google Scholar 

  19. Nummela, S., Hussain, S. T. & Thewissen, J. G. M. Cranial anatomy of Pakicetidae (Cetacea, Mammalia).J. Vertebr. Paleontol.26, 746–759 (2006)

    Article  Google Scholar 

  20. Gray, N. M., Kainec, K., Madar, S., Tomko, L. & Wolfe, S. Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans.Anat. Rec.: Adv. Int. Anat. Evol. Biol.290, 638–653 (2007)

    Article  Google Scholar 

  21. Madar, S. I. The postcranial skeleton of early Eocene pakicetid cetaceans.J. Paleontol.81, 176–200 (2007)

    Article  Google Scholar 

  22. Roe, L. J. et al. inThe Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea (ed. Thewissen, J. G. M.) 399–422 (Plenum, New York, 1998)

    Book  Google Scholar 

  23. Clementz, M. T., Goswami, A., Gingerich, P. D. & Koch, P. L. Isotopic records from early whales and sea cows: contrasting patterns of ecological transition.J. Vertebr. Paleontol.26, 355–370 (2006)

    Article  Google Scholar 

  24. Francillon-Vieillot, H. et al. inSkeletal Biomineralization Patterns, Processes, and Evolutionary Trends (ed. Carter, J. G.) 471–530 (Van Nostrand Reinhold, New York, 1990)

    Google Scholar 

  25. de Buffrénil, V., Ricqlès, A., Ray, C. E. & Domning, D. P. Bone histology of the ribs of the archaeocetes (Mammalia: Cetacea).J. Vertebr. Paleontol.10, 455–466 (1990)

    Article  Google Scholar 

  26. Kaiser, H. E. Untersuchungen zur vergleichenden Osteologie der Fossilen und rezenten Pachyostosen.Palaeontographica A114, 113–196 (1960)

    Google Scholar 

  27. Domning, D. P. & de Buffrénil, V. Hydrostasis in the Sirenia: quantitative data and functional interpretations.Mar. Mamm. Sci.7, 331–368 (1991)

    Article  Google Scholar 

  28. Fish, F. E. & Stein, B. R. Functional correlates of differences in bone density among terrestrial and aquatic genera in the family Mustelidae (Mammalia).Zoomorphology110, 339–345 (1991)

    Article  Google Scholar 

  29. Wall, W. P. The correlation between high limb-bone density and aquatic habitats in recent mammals.J. Paleontol.57, 197–207 (1983)

    Google Scholar 

  30. Taylor, M. A. Functional significance of bone ballast in the evolution of buoyancy control strategies by aquatic tetrapods.Histor. Biol14, 15–31 (2000)

    Article  Google Scholar 

  31. Koch, P. L., Tuross, N. & Fogel, M. L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxyapatite.J. Archaeol. Sci.24, 417–429 (1997)

    Article  Google Scholar 

  32. Kohn, M. J. Predicting animal δ18O: accounting for diet and physiological adaptation.Geochim. Cosmochim. Acta60, 4811–4829 (1996)

    Article ADS CAS  Google Scholar 

  33. Clementz, M. T. & Koch, P. L. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel.Oecologia129, 461–472 (2001)

    Article ADS  Google Scholar 

  34. Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jaeger, J.-J. Isotopic biogeochemistry (13C,18O) of mammalian enamel from African Pleistocene hominid sites.Palaios11, 306–318 (1996)

    Article ADS  Google Scholar 

  35. Bryant, J. D. & Froelich, P. N. A model of oxygen isotope fractionation in body water of large mammals.Geochim. Cosmochim. Acta59, 4523–4537 (1995)

    Article ADS CAS  Google Scholar 

  36. Jim, S., Ambrose, S. H. & Evershed, R. P. Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: Implications for their use in palaeodietary reconstruction.Geochim. Cosmochim. Acta68, 61–72 (2004)

    Article ADS CAS  Google Scholar 

  37. Cloern, J. E., Canuel, E. A. & Harris, D. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system.Limnol. Oceanogr.47, 713–729 (2002)

    Article ADS CAS  Google Scholar 

  38. Osmond, C. B., Valaane, N., Haslam, S. M., Uotila, P. & Roksandic, Z. Comparisons of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland; some implications for photosynthetic processes in aquatic plants.Oecologia50, 117–124 (1981)

    Article ADS CAS  Google Scholar 

  39. O’Leary, M. H. Carbon isotopes and photosynthesis.Bioscience38, 328–336 (1988)

    Article  Google Scholar 

  40. Dubost, G. Un aperçu sur l’écologie du chevrotain africainHyemoschus aquaticus Ogilby, artiodactyle tragulide.Mammalia42, 1–62 (1978)

    Article  Google Scholar 

  41. Ducrocq, S. The late Eocene Anthracotheriidae (Mammalia, Artiodactyla) from Thailand.Palaeontographica A252, 93–140 (1999)

    Google Scholar 

  42. Ducrocq, S. Unusual dental morphologies in late Eocene anthracotheres (Artiodactyla, Mammalia) from Thailand: dental anomalies and extreme variations.N. Jb. Geol. Paläont. MH4, 199–212 (1999)

    Google Scholar 

  43. Suteethorn, V., Buffetaut, E., Helmcke-Ingavat, R., Jaeger, J. J. & Jongkanjanasoontorn, Y. Oldest known Tertiary mammals from South East Asia: middle Eocene primate and anthracotheres from Thailand.N. Jb. Geol. Paläont. MH9, 563–570 (1988)

    Google Scholar 

  44. Colbert, E. H. Fossil mammals from Burma.Am. Mus. Nat. Hist. Bull.74, 419–424 (1938)

    Google Scholar 

  45. Brunet, M. M. Découverte d’un crâne d’Anthracotheriidae,Microbunodon minimum (Cuvier), á La Milloque (Lot-et-Garonne).C. R. Acad. Sci. Paris267, 835–838 (1968)

    Google Scholar 

  46. Lihoreau, F., Blondel, C., Barry, J. & Brunet, M. A new species of the genusMicrobunodon (Anthracotheriidae, Artiodactyla) from the Miocene of Pakistan: genus revision, phylogenetic relationships and palaeobiogeography.Zool. Scr.33, 97–115 (2004)

    Article  Google Scholar 

  47. Bajpai, S. et al. Early Eocene land mammals from Vastan Lignite Mine, District Surat, Gujarat, western India.J. Palaeontol. Soc. India50, 101–113 (2005)

    Google Scholar 

  48. West, R. M. Middle Eocene large mammal assemblage with Tethyan affinities, Ganda Kas region, Pakistan.J. Paleontol.54, 508–533 (1980)

    Google Scholar 

Download references

Acknowledgements

We thank the late F. Obergfell for presenting us with the sediment blocks containingIndohyus fossils collected by A. Ranga Rao for preparation and study; D. S. N. Raju and N. Raju for facilitating our research; B. Armfield, R. Conley and A. Maas for fossil preparation; J. Dillard for preparingFig. 5; and J. Geisler and J. Theodor for providing additional information about their cladistic analyses. Laboratory research was funded by the National Science Foundation (NSF) – Earth Sciences (grants to J.G.M.T. and M.T.C.). Collaborative work was funded by the Indian Department of Science and Technology (to S.B.) and the NSF – International Division (to J.G.M.T.) under the Indo-US Scientific Cooperation Program. Laboratory analyses were supported by the Skeletal Biology Research Focus Area of Northeastern Ohio Universities College of Medicine.

Author Contributions J.G.M.T. was responsible for anatomical and systematic study, and scientific synthesis, L.N.C. for systematic and bone density study, M.T.C. for the study of stable isotopes, and S.B. and B.N.T. for geological study and collecting ofIndohyus and comparative fossil samples.

Author information

Authors and Affiliations

  1. Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA,

    J. G. M. Thewissen & Lisa Noelle Cooper

  2. School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, USA,

    Lisa Noelle Cooper

  3. Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, USA,

    Mark T. Clementz

  4. Department of Earth Sciences, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India,

    Sunil Bajpai

  5. Wadia Institute of Himalayan Geology, Dehra Dun, Uttarakhand 248 001, India,

    B. N. Tiwari

Authors
  1. J. G. M. Thewissen

    You can also search for this author inPubMed Google Scholar

  2. Lisa Noelle Cooper

    You can also search for this author inPubMed Google Scholar

  3. Mark T. Clementz

    You can also search for this author inPubMed Google Scholar

  4. Sunil Bajpai

    You can also search for this author inPubMed Google Scholar

  5. B. N. Tiwari

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJ. G. M. Thewissen.

Supplementary information

Supplementary Information

The file contains Supplementary Methods, Supplementary Results, Supplementary Tables 1-5 and additional references. (PDF 1088 kb)

Rights and permissions

About this article

Cite this article

Thewissen, J., Cooper, L., Clementz, M.et al. Whales originated from aquatic artiodactyls in the Eocene epoch of India.Nature450, 1190–1194 (2007). https://doi.org/10.1038/nature06343

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

The backstory on whales

The first ten million years of whale evolution are well documented in the fossil record, but their emergence from their terrestrial ancestors remains obscure. A new study points to the raoellids — small, primitive even-toed ungulates (artiodactyls) from India — as the closest known relatives of the early whales. The raoellidIndohyus is similar to whales, and unlike other artiodactyls, in the structure of its ears and premolars, in the thickness of its bones and in the isotopic composition of its teeth. These indicators suggest that this raccoon-sized creature spent much of its time in water. Typical raoellids, though, had a very un-whale-like diet, suggesting that the spur to take to the water may have been dietary change, rather than the lure of the aquatic habitper se.

Associated content

Hippopotamus and whale phylogeny

  • Jonathan H. Geisler
  • Jessica M. Theodor
NatureBrief Communications Arising

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp