Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

A genome-wide association study identifies novel risk loci for type 2 diabetes

Naturevolume 445pages881–885 (2007)Cite this article

Abstract

Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case–control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with theTCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporterSLC30A8, which is expressed exclusively in insulin-producing β-cells, and two linkage disequilibrium blocks that contain genes potentially involved in β-cell development or function (IDE–KIF11–HHEX andEXT2–ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Graphical summary of stage 1 association results.
Figure 2:Pairwise linkage disequilibrium diagrams for four novel T2DM-associated loci.

Similar content being viewed by others

References

  1. Permutt, M. A., Wasson, J. & Cox, N. Genetic epidemiology of diabetes.J. Clin. Invest.115, 1431–1439 (2005)

    Article CAS PubMed PubMed Central  Google Scholar 

  2. Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus.Nature Genet.26, 163–175 (2000)

    Article CAS PubMed  Google Scholar 

  3. Meyre, D. et al. Variants ofENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes.Nature Genet.37, 863–867 (2005)

    Article CAS PubMed  Google Scholar 

  4. Love-Gregory, L. D. et al. A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4α gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an ashkenazi jewish population.Diabetes53, 1134–1140 (2004)

    Article CAS PubMed  Google Scholar 

  5. Silander, K. et al. Genetic variation near the hepatocyte nuclear factor-4α gene predicts susceptibility to type 2 diabetes.Diabetes53, 1141–1149 (2004)

    Article CAS PubMed  Google Scholar 

  6. Vasseur, F. et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of theAPM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians.Hum. Mol. Genet.11, 2607–2614 (2002)

    Article CAS PubMed  Google Scholar 

  7. Altshuler, D. et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes.Nature Genet.26, 76–80 (2000)

    Article CAS PubMed  Google Scholar 

  8. Gloyn, A. L. et al. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that theKCNJ11 E23K variant is associated with type 2 diabetes.Diabetes52, 568–572 (2003)

    Article CAS PubMed  Google Scholar 

  9. Grant, S. F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes.Nature Genet.38, 320–323 (2006)

    Article ADS CAS PubMed  Google Scholar 

  10. Zhang, C. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men.Diabetes55, 2645–2648 (2006)

    Article CAS PubMed  Google Scholar 

  11. Damcott, C. M. et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance.Diabetes55, 2654–2659 (2006)

    Article CAS PubMed  Google Scholar 

  12. Scott, L. J. et al. Association of transcription factor 7-like 2 (TCF7L2) variants with type 2 diabetes in a Finnish sample.Diabetes55, 2649–2653 (2006)

    Article CAS PubMed  Google Scholar 

  13. Groves, C. J. et al. Association analysis of 6,736 U.K. subjects provides replication and confirmsTCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk.Diabetes55, 2640–2644 (2006)

    Article CAS PubMed  Google Scholar 

  14. Cauchi, S. et al.TCF7L2 variation predicts hyperglycemia incidence in a French general population: the data from an epidemiological study on the Insulin Resistance Syndrome (DESIR) study.Diabetes55, 3189–3192 (2006)

    Article CAS PubMed  Google Scholar 

  15. Chandak, G. R. et al. Common variants in theTCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population.Diabetologia50, 63–67 (2007)

    Article CAS PubMed  Google Scholar 

  16. Florez, J. C. et al.TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program.N. Engl. J. Med.355, 241–250 (2006)

    Article CAS PubMed PubMed Central  Google Scholar 

  17. Humphries, S. E. et al. Common variants in theTCF7L2 gene and predisposition to type 2 diabetes in UK European whites, Indian Asians and Afro-Caribbean men and women.J. Mol. Med.84, 1–10 (2006)

    Article  Google Scholar 

  18. Parton, L. E. et al. Limited role for SREBP-1c in defective glucose-induced insulin secretion from Zucker diabetic fatty rat islets: a functional and gene profiling analysis.Am. J. Physiol. Endocrinol. Metab.291, E982–E994 (2006)

    Article CAS PubMed  Google Scholar 

  19. Saxena, R. et al. Common single nucleotide polymorphisms inTCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals.Diabetes55, 2890–2895 (2006)

    Article CAS PubMed  Google Scholar 

  20. Weedon, M. N. et al. Combining information from common type 2 diabetes risk polymorphisms improves disease prediction.PLoS Med.3, e374 (2006)

    Article PubMed PubMed Central  Google Scholar 

  21. Fingerlin, T. E., Boehnke, M. & Abecasis, G. R. Increasing the power and efficiency of disease-marker case-control association studies through use of allele-sharing information.Am. J. Hum. Genet.74, 432–443 (2004)

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Balkau, B. An epidemiologic survey from a network of French Health Examination Centres, (D.E.S.I.R.): epidemiologic data on the insulin resistance syndrome.Rev. Epidemiol. Sante Publique44, 373–375 (1996)

    CAS PubMed  Google Scholar 

  23. International HapMap Consortium A haplotype map of the human genome.Nature437, 1299–1320 (2005)

    Article ADS  Google Scholar 

  24. Campbell, C. D. et al. Demonstrating stratification in a European American population.Nature Genet.37, 868–872 (2005)

    Article CAS PubMed  Google Scholar 

  25. Chimienti, F. et al.In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion.J. Cell Sci.119, 4199–4206 (2006)

    Article CAS PubMed  Google Scholar 

  26. Duggirala, R. et al. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans.Am. J. Hum. Genet.64, 1127–1140 (1999)

    Article CAS PubMed PubMed Central  Google Scholar 

  27. Ghosh, S. et al. The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes.Am. J. Hum. Genet.67, 1174–1185 (2000)

    CAS PubMed PubMed Central  Google Scholar 

  28. Meigs, J. B., Panhuysen, C. I., Myers, R. H., Wilson, P. W. & Cupples, L. A. A genome-wide scan for loci linked to plasma levels of glucose and HbA(1c) in a community-based sample of Caucasian pedigrees: The Framingham Offspring Study.Diabetes51, 833–840 (2002)

    Article CAS PubMed  Google Scholar 

  29. Wiltshire, S. et al. A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q.Am. J. Hum. Genet.69, 553–569 (2001)

    Article CAS PubMed PubMed Central  Google Scholar 

  30. Bort, R., Martinez-Barbera, J. P., Beddington, R. S. & Zaret, K. S.Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas.Development131, 797–806 (2004)

    Article CAS PubMed  Google Scholar 

  31. Bort, R., Signore, M., Tremblay, K., Martinez Barbera, J. P. & Zaret, K. S.Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development.Dev. Biol.290, 44–56 (2006)

    Article CAS PubMed  Google Scholar 

  32. Foley, A. C. & Mercola, M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex.Genes Dev.19, 387–396 (2005)

    Article CAS PubMed PubMed Central  Google Scholar 

  33. Bennett, R. G., Hamel, F. G. & Duckworth, W. C. An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures.Diabetes52, 2315–2320 (2003)

    Article CAS PubMed  Google Scholar 

  34. Farris, W. et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domainin vivo.Proc. Natl Acad. Sci. USA100, 4162–4167 (2003)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  35. Groves, C. J. et al. Association and haplotype analysis of the insulin-degrading enzyme (IDE) gene, a strong positional and biological candidate for type 2 diabetes susceptibility.Diabetes52, 1300–1305 (2003)

    Article CAS PubMed  Google Scholar 

  36. Karamohamed, S. et al. Polymorphisms in the insulin-degrading enzyme gene are associated with type 2 diabetes in men from the NHLBI Framingham Heart Study.Diabetes52, 1562–1567 (2003)

    Article CAS PubMed  Google Scholar 

  37. Florez, J. C. et al. High-density haplotype structure and association testing of the insulin-degrading enzyme (IDE) gene with type 2 diabetes in 4,206 people.Diabetes55, 128–135 (2006)

    Article CAS PubMed  Google Scholar 

  38. Apelqvist, A., Ahlgren, U. & Edlund, H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas.Curr. Biol.7, 801–804 (1997)

    Article CAS PubMed  Google Scholar 

  39. Thomas, M. K., Rastalsky, N., Lee, J. H. & Habener, J. F. Hedgehog signaling regulation of insulin production by pancreatic β-cells.Diabetes49, 2039–2047 (2000)

    Article CAS PubMed  Google Scholar 

  40. Boras-Granic, K., Grosschedl, R. & Hamel, P. A. Genetic interaction betweenLef1 andAlx4 is required for early embryonic development.Int. J. Dev. Biol.50, 601–610 (2006)

    Article PubMed  Google Scholar 

  41. Di Rienzo, A. & Hudson, R. R. An evolutionary framework for common diseases: the ancestral-susceptibility model.Trends Genet.21, 596–601 (2005)

    Article CAS PubMed  Google Scholar 

  42. Pritchard, J. K. Are rare variants responsible for susceptibility to complex diseases?Am. J. Hum. Genet.69, 124–137 (2001)

    Article CAS PubMed PubMed Central  Google Scholar 

  43. Hallaq, H. et al. A null mutation ofHhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels.Development131, 5197–5209 (2004)

    Article CAS PubMed  Google Scholar 

  44. Stickens, D. et al. TheEXT2 multiple exostoses gene defines a family of putative tumour suppressor genes.Nature Genet.14, 25–32 (1996)

    Article CAS PubMed  Google Scholar 

  45. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data.Genetics155, 945–959 (2000)

    CAS PubMed PubMed Central  Google Scholar 

  46. Sasieni, P. D. From genotypes to genes: doubling the sample size.Biometrics53, 1253–1261 (1997)

    Article MathSciNet CAS PubMed  Google Scholar 

  47. Clayton, D. G. et al. Population structure, differential bias and genomic control in a large-scale, case-control association study.Nature Genet.37, 1243–1246 (2005)

    Article CAS PubMed  Google Scholar 

  48. Devlin, B. & Roeder, K. Genomic control for association studies.Biometrics55, 997–1004 (1999)

    Article CAS PubMed  Google Scholar 

  49. Reich, D. E. & Goldstein, D. B. Detecting association in a case-control study while correcting for population stratification.Genet. Epidemiol.20, 4–16 (2001)

    Article CAS PubMed  Google Scholar 

  50. Kohler, K. & Bickeboller, H. Case-control association tests correcting for population stratification.Ann. Hum. Genet.70, 98–115 (2006)

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Genome Canada, Génome Québec, and the Canada Foundation for Innovation. Cohort recruitment was supported by the Association Française des Diabétiques, INSERM, CNAMTS, Centre Hospitalier Universitaire Poitiers, La Fondation de France and industrial partners. We thank all individuals who participated as cases or controls in this study. C. Petit, J-P. Riveline and S. Franc were instrumental in recruitment and S. Brunet, F. Bacot, R. Frechette, V. Catudal, M. Deweirder, F. Allegaert, P. Laflamme, P. Lepage, W. Astle, M. Leboeuf and S. Leroux provided technical assistance. K. Shazand and N. Foisset provided organizational guidance. Large-scale computations were made possible by the CLUMEQ supercomputer facility.

Author information

Author notes
  1. Ghislain Rocheleau, Johan Rung and Christian Dina: These authors contributed equally to this work.

Authors and Affiliations

  1. Departments of Human Genetics,,

    Robert Sladek, Ghislain Rocheleau, Lishuang Shen, David Serre & Constantin Polychronakos

  2. Medicine and,,

    Robert Sladek & Barry I. Posner

  3. Pediatrics, Faculty of Medicine, McGill University, Montreal H3H 1P3, Canada,

    Constantin Polychronakos

  4. McGill University and Genome Quebec Innovation Centre, Montreal H3A 1A4, Canada,

    Robert Sladek, Johan Rung, Daniel Vincent, Alexandre Belisle, Thomas J. Hudson & Alexandre Montpetit

  5. CNRS 8090-Institute of Biology, Pasteur Institute, Lille 59019 Cedex, France,

    Christian Dina, Philippe Boutin, David Meyre & Philippe Froguel

  6. Endocrinology and Diabetology, University Hospital, Poitiers 86021 Cedex, France,

    Samy Hadjadj

  7. INSERM U780-IFR69, Villejuif 94807, France,

    Beverley Balkau & Barbara Heude

  8. Endocrinology-Diabetology Unit, Corbeil-Essonnes Hospital, Corbeil-Essonnes 91100, France,

    Guillaume Charpentier

  9. Ontario Institute for Cancer Research, Toronto M5G 1L7, Canada,

    Thomas J. Hudson

  10. Montreal Diabetes Research Center, Montreal H2L 4M1, Canada,

    Alexey V. Pshezhetsky & Marc Prentki

  11. Molecular Nutrition Unit and the Department of Nutrition, University of Montreal and the Centre Hospitalier de l’Université de Montréal, Montreal H3C 3J7, Canada,

    Marc Prentki

  12. Polypeptide Hormone Laboratory and Department of Anatomy and Cell Biology, Montreal H3A 2B2, Canada,

    Barry I. Posner

  13. Department of Epidemiology & Public Health, Imperial College, St Mary’s Campus, Norfolk Place, London W2 1PG, UK,

    David J. Balding

  14. Section of Genomic Medicine, Imperial College London W12 0NN, and Hammersmith Hospital, Du Cane Road, London W12 0HS, UK,

    Philippe Froguel

Authors
  1. Robert Sladek

    You can also search for this author inPubMed Google Scholar

  2. Ghislain Rocheleau

    You can also search for this author inPubMed Google Scholar

  3. Johan Rung

    You can also search for this author inPubMed Google Scholar

  4. Christian Dina

    You can also search for this author inPubMed Google Scholar

  5. Lishuang Shen

    You can also search for this author inPubMed Google Scholar

  6. David Serre

    You can also search for this author inPubMed Google Scholar

  7. Philippe Boutin

    You can also search for this author inPubMed Google Scholar

  8. Daniel Vincent

    You can also search for this author inPubMed Google Scholar

  9. Alexandre Belisle

    You can also search for this author inPubMed Google Scholar

  10. Samy Hadjadj

    You can also search for this author inPubMed Google Scholar

  11. Beverley Balkau

    You can also search for this author inPubMed Google Scholar

  12. Barbara Heude

    You can also search for this author inPubMed Google Scholar

  13. Guillaume Charpentier

    You can also search for this author inPubMed Google Scholar

  14. Thomas J. Hudson

    You can also search for this author inPubMed Google Scholar

  15. Alexandre Montpetit

    You can also search for this author inPubMed Google Scholar

  16. Alexey V. Pshezhetsky

    You can also search for this author inPubMed Google Scholar

  17. Marc Prentki

    You can also search for this author inPubMed Google Scholar

  18. Barry I. Posner

    You can also search for this author inPubMed Google Scholar

  19. David J. Balding

    You can also search for this author inPubMed Google Scholar

  20. David Meyre

    You can also search for this author inPubMed Google Scholar

  21. Constantin Polychronakos

    You can also search for this author inPubMed Google Scholar

  22. Philippe Froguel

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toConstantin Polychronakos.

Ethics declarations

Competing interests

Reprints and permissions information is available atwww.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes with additional references, Supplementary Tables S1-S8 and Supplementary Figures S1-S5. (PDF 560 kb)

Rights and permissions

About this article

Cite this article

Sladek, R., Rocheleau, G., Rung, J.et al. A genome-wide association study identifies novel risk loci for type 2 diabetes.Nature445, 881–885 (2007). https://doi.org/10.1038/nature05616

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

Diabetes in the genes

Overeating and physical inactivity are major causes of type 2 diabetes mellitus, but they affect only genetically susceptible individuals and the genetic basis of the disease is notoriously complex. Recent research has suggested that specific genes may be associated with the risk of developing the disease, however. Now a genome-wide search using high-density genotyping arrays has identified four previously unknown genes as diabetes risk factors, and confirmed a known association with theTCF7L2 gene. Together these five genes may contribute a sizeable fraction of the disease risk in type 2 diabetes, and analysis of their function should clarify the pathogenesis of diabetes and point to new drug targets. In addition, individuals shown to have these mutations could minimize their risk by adjusting diet.

Associated content

Variants in common diseases

  • Nelson B. Freimer
  • Chiara Sabatti
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp