- Letter
- Published:
Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider
- Muriel Jager1,
- Jérôme Murienne1,4 nAff3,
- Céline Clabaut1,3 nAff4,
- Jean Deutsch2,
- Hervé Le Guyader1 &
- …
- Michaël Manuel1
Naturevolume 441, pages506–508 (2006)Cite this article
1190Accesses
15Altmetric
Abstract
Arthropod head segments offer a paradigm for understanding the diversification of form during evolution, as a variety of morphologically diverse appendages have arisen from them. There has been long-running controversy, however, concerning which head appendages are homologous among arthropods, and from which ancestral arrangement they have been derived. This controversy has recently been rekindled by the proposition that the probable ancestral arrangement, with appendages on the first head segment, has not been lost in all extant arthropods as previously thought, but has been retained in the pycnogonids, or sea spiders1. This proposal was based on the neuroanatomical analysis of larvae from the sea spiderAnoplodactylus sp., and suggested that the most anterior pair of appendages, the chelifores, are innervated from the first part of the brain, the protocerebrum. Our examination of Hox gene expression in another sea spider,Endeis spinosa, refutes this hypothesis. The anterior boundaries of Hox gene expression domains place the chelifore appendages as clearly belonging to the second head segment, innervated from the second part of the brain, the deutocerebrum. The deutocerebrum must have been secondarily displaced towards the protocerebrum in pycnogonid ancestors. As anterior-most appendages are also deutocerebral in the other two arthropod groups, the Euchelicerata and the Mandibulata, we conclude that the protocerebral appendages have been lost in all extant arthropods.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Maxmen, A., Browne, W. E., Martindale, M. Q. & Giribet, G. Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment.Nature437, 1144–1148 (2005)
Budd, G. E. A palaeontological solution to the arthropod head problem.Nature417, 271–275 (2002)
Scholtz, G. & Edgecombe, G. Heads, Hox and the phylogenetic position of trilobites.Crustac. Issues16, 139–165 (2005)
Eriksson, B. J., Tait, N. N. & Budd, G. E. Head development in the onychophoranEuperipatoides kanangrensis with particular reference to the central nervous system.J. Morphol.255, 1–23 (2003)
Mayer, G. & Koch, M. Ultrastructure and fate of the nephridial anlagen in the antennal segment ofEpiperipatus biolleyi (Onychophora, Peripatidae)—evidence for the onychophoran antennae being modified legs.Arthrop. Struct. Dev.34, 471–480 (2005)
Popadic, A., Panganiban, G., Rusch, D., Shear, W. A. & Kaufman, T. C. Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures.Dev. Genes Evol.208, 142–150 (1998)
Damen, W. G. M., Hausdorf, M., Seyfarth, E.-A. & Tautz, D. A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider.Proc. Natl Acad. Sci. USA95, 10665–10670 (1998)
Telford, M. J. & Thomas, R. H. Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment.Proc. Natl Acad. Sci. USA95, 10671–10675 (1998)
Mittmann, B. & Scholtz, G. Development of the nervous system in the “head” ofLimulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata.Dev. Genes Evol.213, 9–17 (2003)
Mallatt, J. M., Garey, J. R. & Schultz, J. W. Ecdysozoan phylogeny and bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin.Mol. Phyl. Evol.31, 178–191 (2004)
Dunlop, J. A. & Arango, C. P. Pycnogonid affinities: a review.J. Zool. Syst. Evol. Res.43, 8–21 (2005)
Giribet, G., Edgecombe, G. D. & Wheeler, W. C. Arthropod phylogeny based on eight molecular loci and morphology.Nature413, 157–161 (2001)
Brusca, R. C. & Brusca, G. J.Invertebrates 2nd edn (Sinauer, Sunderland, Massachusetts, 2003)
Budd, G. E. & Telford, M. J. Along came a sea spider.Nature437, 1099–1102 (2005)
Hughes, C. L. & Kaufman, T. C. Hox genes and the evolution of the arthropod body plan.Evol. Dev.4, 459–499 (2002)
Meisenheimer, J. Beiträge zur entwicklungsgeschichte der pantopoden. I. Die entwicklung vonAmmothea echinata hodge bis zur ausbildung der larvenform.Z. Wiss. Zool.72, 191–248 (1902)
Winter, G. Beiträge zur morphologie und embryologie des vorderen körperabschnitts (Cephalosoma) der Pantopoda gerstaecker, 1863.Z. Zool. Syst. Evol.-Forsch.18, 27–61 (1980)
Sanchez, S.Le Développement des Pycnogonides et leurs Affinités avec les Arachnides. Thesis, CNRS, Paris (1959)
Morgan, T. H. A contribution to the embryology and phylogeny of the pycnogonids.Stud. Biol. Lab. Johns Hopkins Univ.5, 1–76 (1891)
Babu, K. S. Anatomy of the central nervous system of arachnids.Zool. Jb. Anat.82, 1–154 (1965)
Weygoldt, P. inNeurobiology of Arachnids (ed. Barth, F. G.) 20–37 (Springer, Berlin/Heidelberg/New York, 1985)
Sandeman, D. C., Scholtz, G. & Sandeman, R. Brain evolution in decapod Crustacea.J. Exp. Zool.295, 112–133 (1993)
Henry, L. M. The nervous system of the pycnogonids.Microentomology USA18, 16–36 (1953)
Schmidt-Rhaesa, A., Bartolomaeus, T., Lemburg, C., Ehlers, U. & Garey, J. R. The position of the Arthropoda in the phylogenetic system.J. Morphol.238, 263–285 (1998)
Wiren, E. Zur morphologie und phylogenie der pantopoden.Zool. Bidr. Uppsala6, 41–181 (1918)
Bullock, T. H. & Horridge, G. A.Structure and Function in the Nervous Systems of InvertebratesVol. 2 (Freeman, San Francisco/London, 1965)
Scholtz, G. inArthropod Relationships (eds Fortey, R. A. & Thomas, R. H.) 317–332 (Chapman and Hall, London, 1997)
Simonnet, F., Deutsch, J. & Quéinnec, E.hedgehog is a segment polarity gene in a crustacean and a chelicerate.Dev. Genes Evol.214, 537–545 (2004)
Gibert, J. M., Mouchel-Vielh, E., Quéinnec, E. & Deutsch, J. S. Barnacle duplicateengrailed genes: divergent expression patterns and evidence for a vestigial abdomen.Evol. Dev.2, 194–202 (2000)
Acknowledgements
We thank the Station Biologique de Roscoff for providing laboratory facilities for specimen collection and preparation. We are grateful to E. Quéinnec, N. Rabet and P. Bunje for advice and discussion, to P. Lamarre for technical help and to T. Jaffredo for laboratory facilities. E. Houliston and G. Scholtz provided much help and insight. This work was funded by the CNRS and the French Ministry of Research.
Author information
Jérôme Murienne
Present address: Muséum National d'Histoire Naturelle, UMR 5202 CNRS, Département Systématique et Evolution, case 50, 45 rue Buffon, 75005, Paris, France
Céline Clabaut
Present address: Department of Biology, Evolutionary Biology, University of Konstanz, D-78457, Konstanz, Germany
Authors and Affiliations
Université Pierre et Marie Curie-Paris 6, UMR 7138 CNRS UPMC MNHN ENS IRD, Case 05, 9 quai St Bernard, 75005, Paris, France
Muriel Jager, Jérôme Murienne, Céline Clabaut, Hervé Le Guyader & Michaël Manuel
Université Pierre et Marie Curie-Paris 6, UMR 7622 CNRS UPMC, 9 quai St Bernard, 75005, Paris, France
Jean Deutsch
Muséum National d'Histoire Naturelle, UMR 5202 CNRS, Département Systématique et Evolution, case 50, 45 rue Buffon, 75005, Paris, France
Céline Clabaut
Department of Biology, Evolutionary Biology, University of Konstanz, D-78457, Konstanz, Germany
Jérôme Murienne
- Muriel Jager
You can also search for this author inPubMed Google Scholar
- Jérôme Murienne
You can also search for this author inPubMed Google Scholar
- Céline Clabaut
You can also search for this author inPubMed Google Scholar
- Jean Deutsch
You can also search for this author inPubMed Google Scholar
- Hervé Le Guyader
You can also search for this author inPubMed Google Scholar
- Michaël Manuel
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toMichaël Manuel.
Ethics declarations
Competing interests
Sequences from this work have been deposited in the GenBank database with the following accession numbers: DQ315728 (E. spinosa lab); DQ315730 (E. spinosa pb); DQ315733 (E. spinosa Dfd); and DQ315734 (E. spinosa Scr). Reprints and permissions information is available atnpg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.
Supplementary information
Supplementary Figure 1
Amino-acid sequence alignment of pycnogonidHox genes from this work with representative genes from various arthropods. (PDF 15 kb)
Supplementary Figure 2
Phylogenetic analysis ofEndeis spinosa Hox genes from this work, establishing their orthology relationships. (PDF 15 kb)
Supplementary Figure Legends
Text to accompany Supplementary Figures 1 and 2. (DOC 24 kb)
Rights and permissions
About this article
Cite this article
Jager, M., Murienne, J., Clabaut, C.et al. Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider.Nature441, 506–508 (2006). https://doi.org/10.1038/nature04591
Received:
Accepted:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative