Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Lipid–protein interactions in double-layered two-dimensional AQP0 crystals

Naturevolume 438pages633–638 (2005)Cite this article

ACorrigendum to this article was published on 11 May 2006

Abstract

Lens-specific aquaporin-0 (AQP0) functions as a specific water pore and forms the thin junctions between fibre cells. Here we describe a 1.9 Å resolution structure of junctional AQP0, determined by electron crystallography of double-layered two-dimensional crystals. Comparison of junctional and non-junctional AQP0 structures shows that junction formation depends on a conformational switch in an extracellular loop, which may result from cleavage of the cytoplasmic amino and carboxy termini. In the centre of the water pathway, the closed pore in junctional AQP0 retains only three water molecules, which are too widely spaced to form hydrogen bonds with each other. Packing interactions between AQP0 tetramers in the crystalline array are mediated by lipid molecules, which assume preferred conformations. We were therefore able to build an atomic model for the lipid bilayer surrounding the AQP0 tetramers, and we describe lipid–protein interactions.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Electron crystallography of AQP0 junctions.
Figure 2:Structural differences between junctional and non-junctional AQP0.
Figure 3:The water pore in AQP0.
Figure 4:Lipid–protein interactions in double-layered AQP0 2D crystals.

Similar content being viewed by others

References

  1. Agre, P. et al. Aquaporin water channels—from atomic structure to clinical medicine.J. Physiol. (Lond.)542, 3–16 (2002)

    Article CAS  Google Scholar 

  2. Murata, K. et al. Structural determinants of water permeation through aquaporin-1.Nature407, 599–605 (2000)

    Article ADS CAS  Google Scholar 

  3. Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity.Science290, 481–486 (2000)

    Article ADS CAS  Google Scholar 

  4. Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel.Nature414, 872–878 (2001)

    Article ADS CAS  Google Scholar 

  5. Ren, G., Reddy, V. S., Cheng, A., Melnyk, P. & Mitra, A. K. Visualization of a water-selective pore by electron crystallography in vitreous ice.Proc. Natl Acad. Sci. USA98, 1398–1403 (2001)

    Article ADS CAS  Google Scholar 

  6. Savage, D. F., Egea, P. F., Robles-Colmenares, Y., O'Connell, J. D. & Stroud, R. M. Architecture and selectivity in aquaporins: 2.5 Å X-ray structure of aquaporin Z.PLoS Biol.1, E72 (2003)

    Article  Google Scholar 

  7. Gonen, T., Sliz, P., Kistler, J., Cheng, Y. & Walz, T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore.Nature429, 193–197 (2004)

    Article ADS CAS  Google Scholar 

  8. Harries, W. E., Akhavan, D., Miercke, L. J., Khademi, S. & Stroud, R. M. The channel architecture of aquaporin 0 at a 2.2-Å resolution.Proc. Natl Acad. Sci. USA101, 14045–14050 (2004)

    Article ADS CAS  Google Scholar 

  9. de Groot, B. L. & Grubmuller, H. The dynamics and energetics of water permeation and proton exclusion in aquaporins.Curr. Opin. Struct. Biol.15, 176–183 (2005)

    Article CAS  Google Scholar 

  10. Kistler, J. & Bullivant, S. Lens gap junctions and orthogonal arrays are unrelated.FEBS Lett.111, 73–78 (1980)

    Article CAS  Google Scholar 

  11. Gonen, T., Cheng, Y., Kistler, J. & Walz, T. Aquaporin-0 membrane junctions form upon proteolytic cleavage.J. Mol. Biol.342, 1337–1345 (2004)

    Article CAS  Google Scholar 

  12. Nemeth-Cahalan, K. L., Kalman, K. & Hall, J. E. Molecular basis of pH and Ca2+ regulation of aquaporin water permeability.J. Gen. Physiol.123, 573–580 (2004)

    Article CAS  Google Scholar 

  13. Gyobu, N. et al. Improved specimen preparation for cryo-electron microscopy using a symmetric carbon sandwich technique.J. Struct. Biol.146, 325–333 (2004)

    Article CAS  Google Scholar 

  14. Fujiyoshi, Y. The structural study of membrane proteins by electron crystallography.Adv. Biophys.35, 25–80 (1998)

    Article CAS  Google Scholar 

  15. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination.Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998)

    Article CAS  Google Scholar 

  16. Roy, D., Spector, A. & Farnsworth, P. N. Human lens membrane: comparison of major intrinsic polypeptides from young and old lenses isolated by a new methodology.Exp. Eye Res.28, 353–358 (1979)

    Article CAS  Google Scholar 

  17. Takemoto, L., Takehana, M. & Horwitz, J. Covalent changes in MIP26K during aging of the human lens membrane.Invest. Ophthalmol. Vis. Sci.27, 443–446 (1986)

    CAS PubMed  Google Scholar 

  18. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical qaulity of protein structures.J. Appl. Crystallogr.26, 283–291 (1993)

    Article CAS  Google Scholar 

  19. Vriend, G. WHAT IF: a molecular modeling and drug design program.J. Mol. Graph.8, 526–529 (1990)

    Google Scholar 

  20. Wang, Y., Schulten, K. & Tajkhorshid, E. What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF.Structure13, 1107–1118 (2005)

    Article CAS  Google Scholar 

  21. de Groot, B. L. & Grubmuller, H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF.Science294, 2353–2357 (2001)

    Article ADS CAS  Google Scholar 

  22. Zhu, F., Tajkhorshid, E. & Schulten, K. Molecular dynamics study of aquaporin-1 water channel in a lipid bilayer.FEBS Lett.504, 212–218 (2001)

    Article CAS  Google Scholar 

  23. Tajkhorshid, E. et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning.Science296, 525–530 (2002)

    Article ADS CAS  Google Scholar 

  24. Ball, L. E. et al. Water permeability of C-terminally truncated aquaporin 0 (AQP0 1–243) observed in the aging human lens.Invest. Ophthalmol. Vis. Sci.44, 4820–4828 (2003)

    Article  Google Scholar 

  25. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structure of bacteriorhodopsin at 1.55 Å resolution.J. Mol. Biol.291, 899–911 (1999)

    Article CAS  Google Scholar 

  26. Wiener, M. inProtein–Lipid Interactions: From Membrane Domains to Cellular Networks (ed. Tamm, L. K.) 29–49 (Wiley-VCH, Weinheim, 2005)

    Google Scholar 

  27. Dowhan, W. Molecular basis for membrane phospholipid diversity: why are there so many lipids?Annu. Rev. Biochem.66, 199–232 (1997)

    Article CAS  Google Scholar 

  28. Zampighi, G., Simon, S. A., Robertson, J. D., McIntosh, T. J. & Costello, M. J. On the structural organization of isolated bovine lens fiber junctions.J. Cell Biol.93, 175–189 (1982)

    Article CAS  Google Scholar 

  29. Kucerka, N. et al. Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles.Biophys. J.88, 2626–2637 (2005)

    Article ADS CAS  Google Scholar 

  30. Palsdottir, H. & Hunte, C. Lipids in membrane protein structures.Biochim. Biophys. Acta1666, 2–18 (2004)

    Article CAS  Google Scholar 

  31. Schey, K. L., Little, M., Fowler, J. G. & Crouch, R. K. Characterization of human lens major intrinsic protein structure.Invest. Ophthalmol. Vis. Sci.41, 175–182 (2000)

    CAS PubMed  Google Scholar 

  32. Ball, L. E., Garland, D. L., Crouch, R. K. & Schey, K. L. Post-translational modifications of aquaporin 0 (AQP0) in the normal human lens: spatial and temporal occurrence.Biochemistry43, 9856–9865 (2004)

    Article CAS  Google Scholar 

  33. Shiels, A. & Bassnett, S. Mutations in the founder of theMIP gene family underlie cataract development in the mouse.Nature Genet.12, 212–215 (1996)

    Article CAS  Google Scholar 

  34. Shiels, A., Mackay, D., Bassnett, S., Al-Ghoul, K. & Kuszak, J. Disruption of lens fiber cell architecture in mice expressing a chimeric AQP0-LTR protein.FASEB J.14, 2207–2212 (2000)

    Article CAS  Google Scholar 

  35. Francis, P. et al. Functional impairment of lens aquaporin in two families with dominantly inherited cataracts.Hum. Mol. Genet.9, 2329–2334 (2000)

    Article CAS  Google Scholar 

  36. Francis, P., Berry, V., Bhattacharya, S. & Moore, A. Congenital progressive polymorphic cataract caused by a mutation in the major intrinsic protein of the lens, MIP (AQP0).Br. J. Ophthalmol.84, 1376–1379 (2000)

    Article CAS  Google Scholar 

  37. Okamura, T. et al. Bilateral congenital cataracts result from a gain-of-function mutation in the gene for aquaporin-0 in mice.Genomics81, 361–368 (2003)

    Article CAS  Google Scholar 

  38. Chepelinsky, A. B. The ocular lens fiber membrane specific protein MIP/aquaporin 0.J. Exp. Zool. A300, 41–46 (2003)

    Article  Google Scholar 

  39. Lee, A. G. How lipids affect the activities of integral membrane proteins.Biochim. Biophys. Acta1666, 62–87 (2004)

    Article CAS  Google Scholar 

  40. Jensen, M. O. & Mouritsen, O. G. Lipids do influence protein function—the hydrophobic matching hypothesis revisited.Biochim. Biophys. Acta1666, 205–226 (2004)

    Article CAS  Google Scholar 

  41. Mitsuoka, K. et al. The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: implication of the charge distribution.J. Mol. Biol.286, 861–882 (1999)

    Article CAS  Google Scholar 

  42. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models.Acta Crystallogr. A47, 110–119 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH funding (to T.W.) and a Grant-in Aid for Specially Promoted Research (to Y.F.).

Author information

Authors and Affiliations

  1. Department of Cell Biology,

    Tamir Gonen, Yifan Cheng & Thomas Walz

  2. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Massachusetts, 02115, Boston, USA

    Piotr Sliz & Stephen C. Harrison

  3. Howard Hughes Medical Institute and Children's Hospital Laboratory of Molecular Medicine, 320 Longwood Avenue, Massachusetts, 02115, Boston, USA

    Piotr Sliz & Stephen C. Harrison

  4. Department of Biophysics, Kyoto University, Oiwake, 606-8502, Kitashirakawa Sakyo-ku, Kyoto, Japan

    Yoko Hiroaki & Yoshinori Fujiyoshi

Authors
  1. Tamir Gonen
  2. Yifan Cheng
  3. Piotr Sliz
  4. Yoko Hiroaki
  5. Yoshinori Fujiyoshi
  6. Stephen C. Harrison
  7. Thomas Walz

Corresponding author

Correspondence toThomas Walz.

Ethics declarations

Competing interests

Coordinates and structure factors for junctional and non-junctional AQP0 have been deposited in the Protein Data Bank (accession codes 2B6O and 2B6P, respectively). Reprints and permissions information is available atnpg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

Lipid-protein and lipid-lipid interactions in the AQP0 junction, together with legends for supplementary figures. (DOC 26 kb)

Supplementary Figure 1

Electron diffraction pattern of a double-layered AQP0 2D crystal tilted to 60°. (PDF 465 kb)

Supplementary Figure 2

Protein packing in 3D and 2D crystals of AQP0. (PDF 226 kb)

Supplementary Figure 3

Residues in loop A of AQP0 involved in junction formation. (PDF 392 kb)

Supplementary Figure 4

The constricted water pore in junctional AQP0. (PDF 653 kb)

Supplementary Figure 5

The water pore in AQP0. (PDF 95 kb)

Supplementary Figure 6

Stereo view of the nine lipids surrounding an AQP0 monomer in the 2D crystals. (PDF 207 kb)

Supplementary Figure 7

Lipids surrounding the AQP0 tetramer mediate the crystal contacts. (PDF 521 kb)

Supplementary Table 1

Crystallographic statistics of non-junctional AQP0 (X-ray). (DOC 20 kb)

Rights and permissions

About this article

Cite this article

Gonen, T., Cheng, Y., Sliz, P.et al. Lipid–protein interactions in double-layered two-dimensional AQP0 crystals.Nature438, 633–638 (2005). https://doi.org/10.1038/nature04321

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Membrane organization

Aquaporin-0 (AQP0) is the most abundant protein in the membranes of fibre cells in the lens of the mammalian eye, acting both as a water-conducting channel and as an adhesion molecule at cell junctions. The structure of AQP0 unbound (shown on the cover), and together with the lipids that surround it in the membrane, has now been determined at high resolution by electron microscopy — high enough to resolve single water molecules. The structure gives us the first close look at how a membrane protein is embedded in a lipid bilayer. When junctions form between lens fibre cells, the associated lipids, already partly immobilized by interaction with AQP0, mediate the lattice contacts. AQP0 mutations are known to cause cataracts; these mutations may be interfering with AQP0's interaction with the lipids, preventing the integration of AQP0 into a bilayer

Associated content

Focus

Ion channels: structure and function

A greasy grip

  • Anthony G. Lee
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp