Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model

Naturevolume 438pages193–196 (2005)Cite this article

Abstract

The bands of Jupiter represent a global system of powerful winds. Broad eastward equatorial jets are flanked by smaller-scale, higher-latitude jets flowing in alternating directions1,2. Jupiter's large thermal emission suggests that the winds are powered from within3,4, but the zonal flow depth is limited by increasing density and electrical conductivity in the molecular hydrogen–helium atmosphere towards the centre of the planet5. Two types of planetary flow models have been explored: shallow-layer models reproduce multiple high-latitude jets, but not the equatorial flow system6,7,8, and deep convection models only reproduce an eastward equatorial jet with two flanking neighbours9,10,11,12,13,14. Here we present a numerical model of three-dimensional rotating convection in a relatively thin spherical shell that generates both types of jets. The simulated flow is turbulent and quasi-two-dimensional and, as observed for the jovian jets, simulated jet widths follow Rhines' scaling theory2,12,13,15. Our findings imply that Jupiter's latitudinal transition in jet width corresponds to a separation between the bottom-bounded flow structures in higher latitudes and the deep equatorial flows.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Illustration of rapidly rotating turbulent convection in a spherical shell.
Figure 2:Zonal flow for Jupiter and the numerical simulation.
Figure 3:Measured jet widths compared to jet widths predicted by Rhines scaling for Jupiter (a) and the numerical model (b).

Similar content being viewed by others

References

  1. Porco, C. C. et al. Cassini imaging of Jupiter's atmosphere, satellites and rings.Science299, 1541–1547 (2003)

    Article ADS CAS  Google Scholar 

  2. Vasavada, A. R. & Showman, A. P. Jovian atmospheric dynamics: an update after Galileo and Cassini.Rep. Prog. Phys.68, 1935–1996 (2005)

    Article ADS MathSciNet  Google Scholar 

  3. Ingersoll, A. P. Pioneer 10 and 11 observations and the dynamics of Jupiter's atmosphere.Icarus29, 245–253 (1976)

    Article ADS  Google Scholar 

  4. Pirraglia, J. A. Meridional energy balance of Jupiter.Icarus59, 169–176 (1984)

    Article ADS  Google Scholar 

  5. Guillot, T., Stevenson, D. J., Hubbard, W. & Saumon, D. inJupiter, the Planet, Satellites and Magnetosphere (eds Bagenal, F., Dowling, T. E. & McKinnon, W. B.) 35–57 (Cambridge Univ. Press, Cambridge, 2004)

    Google Scholar 

  6. Cho, J. Y.-K. & Polvani, L. M. The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets.Science273, 335–337 (1996)

    Article ADS CAS  Google Scholar 

  7. Williams, G. P. Planetary circulations. 1. Barotropic representation of Jovian and terrestrial turbulence.J. Atmos. Sci.35, 1399–1426 (1978)

    Article ADS  Google Scholar 

  8. Williams, G. P. Jovian dynamics. Part III: Multiple, migrating, and equatorial jets.J. Atmos. Sci.60, 1270–1296 (2003)

    Article ADS  Google Scholar 

  9. Aurnou, J. M. & Olson, P. L. Strong zonal winds from thermal convection in a rotating spherical shell.Geophys. Res. Lett.28, 2557–2559 (2001)

    Article ADS  Google Scholar 

  10. Christensen, U. R. Zonal flow driven by deep convection on the major planets.Geophys. Res. Lett.28, 2553–2556 (2001)

    Article ADS  Google Scholar 

  11. Christensen, U. R. Zonal flow driven by strongly supercritical convection in rotating spherical shells.J. Fluid Mech.470, 115–133 (2002)

    Article ADS MathSciNet  Google Scholar 

  12. Yano, J. I., Talagrand, O. & Drossart, P. Origins of atmospheric zonal winds.Nature421, 36 (2003)

    Article ADS CAS  Google Scholar 

  13. Yano, J. I., Talagrand, O. & Drossart, P. Deep two-dimensional turbulence: An idealized model for atmospheric jets of the giant outer planets.Geophys. Astrophys. Fluid Dyn.99, 137–150 (2005)

    Article ADS MathSciNet  Google Scholar 

  14. Aurnou, J. M. & Heimpel, M. H. Zonal jets in rotating convection with mixed mechanical boundary conditions.Icarus169, 492–498 (2004)

    Article ADS  Google Scholar 

  15. Ingersoll, A. P. Atmospheric dynamics of the outer planets.Science248, 308–315 (1990)

    Article ADS CAS  Google Scholar 

  16. Rhines, P. B. Waves and turbulence on a beta-plane.J. Fluid Mech.69, 417–443 (1975)

    Article ADS  Google Scholar 

  17. Schoff, R. & Colin de Verdiere, A. Taylor columns between concentric spheres.Geophys. Astrophys. Fluid Dyn.86, 43–73 (1997)

    Article ADS MathSciNet  Google Scholar 

  18. Busse, F. H. A simple model of convection in the Jovian atmosphere.Icarus20, 255–260 (1976)

    Article ADS  Google Scholar 

  19. Manneville, J. B. & Olson, P. Banded convection in rotating fluid spheres and the circulation of the Jovian atmosphere.Icarus122, 242–250 (1996)

    Article ADS CAS  Google Scholar 

  20. Jones, C. A., Rotvig, J. & Abdulrahman, A. Multiple jets and zonal flow on Jupiter.Geophys. Res. Lett.30, doi:10.1029/2003GL016980 (2003)

  21. Read, P. L. et al. Jupiter's and Saturn's convectively driven banded jets in the laboratory.Geophys. Res. Lett.31, doi:10.1029/2004GL020106 (2004)

  22. Atkinson, D. H., Pollack, J. B. & Seiff, A. The Galileo Probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter.J. Geophys. Res.103, 22911–22928 (1998)

    Article ADS  Google Scholar 

  23. Kirk, R. L. & Stevenson, D. J. Hydromagnetic constraints on deep zonal flow in the giant planets.Astrophys. J.316, 836–846 (1987)

    Article ADS  Google Scholar 

  24. Aubert, J., Brito, D., Nataf, H.-C., Cardin, P. & Masson, J. P. A systematic experimental study of spherical shell convection in water and liquid gallium.Phys. Earth. Planet. Inter.128, 51–74 (2001)

    Article ADS CAS  Google Scholar 

  25. Evonuk, M. & Glatzmaier, G. A. 2D studies of various approximations used for modeling convection in the giant planets.Geophys. Astrophys. Fluid Dyn.98, 241–255 (2004)

    Article ADS  Google Scholar 

  26. Hubbard, W. B. Gravitational signature of Jupiter's deep zonal flows.Icarus137, 357–359 (1999)

    Article ADS  Google Scholar 

  27. Martinez, C. NASA selects new frontier mission concept study.http://www.jpl.nasa.gov/news/news.cfm?release=2005-090 (2005).

  28. Wicht, J. Inner-core conductivity in numerical dynamo simulations.Phys. Earth Planet. Inter.132, 281–302 (2002)

    Article ADS  Google Scholar 

  29. Al-Shamali, F. M., Heimpel, M. H. & Aurnou, J. M. Varying the spherical shell geometry in rotating thermal convection.Geophys. Astrophys. Fluid Dyn.98, 153–169 (2004)

    Article ADS  Google Scholar 

  30. Kuang, W.-J. & Bloxham, J. Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: Weak and strong field dynamo action.J. Comp. Phys.153, 51–81 (1999)

    Article ADS MathSciNet  Google Scholar 

Download references

Acknowledgements

Funding was provided by NSERC Canada, UCLA, and the DFG Germany priority programme ‘Geomagnetic variations’. Computational resources were provided by the Western Canada Research Grid (West Grid).

Author information

Authors and Affiliations

  1. Department of Physics, University of Alberta, Alberta, T6G 2J1, Edmonton, Canada

    Moritz Heimpel

  2. Department of Earth and Space Sciences, UCLA, California, 90095-1567, Los Angeles, USA

    Jonathan Aurnou

  3. Max Planck Institute for Solar System Research, 37191, Katlenburg-Lindau, Germany

    Johannes Wicht

Authors
  1. Moritz Heimpel

    You can also search for this author inPubMed Google Scholar

  2. Jonathan Aurnou

    You can also search for this author inPubMed Google Scholar

  3. Johannes Wicht

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toMoritz Heimpel.

Ethics declarations

Competing interests

Reprints and permissions information is available atnpg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Results, Supplementary Discussion, Supplementary Figures 1–4 and Supplementary Table 1. (PDF 465 kb)

Rights and permissions

About this article

Cite this article

Heimpel, M., Aurnou, J. & Wicht, J. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model.Nature438, 193–196 (2005). https://doi.org/10.1038/nature04208

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

Catch the wind

The characteristic bands in Jupiter's atmosphere are produced by a global system of powerful winds of two basic types: broad eastward equatorial jets, and smaller-scale, higher latitude jets that flow in alternating directions. A new numerical model succeeds where previous models have failed in that it simultaneously generates both of the two dominant zonal wind patterns.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp