Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Review Article
  • Published:

Molecular diversity and ecology of microbial plankton

Naturevolume 437pages343–348 (2005)Cite this article

Abstract

The history of microbial evolution in the oceans is probably as old as the history of life itself. In contrast to terrestrial ecosystems, microorganisms are the main form of biomass in the oceans, and form some of the largest populations on the planet. Theory predicts that selection should act more efficiently in large populations. But whether microbial plankton populations harbour organisms that are models of adaptive sophistication remains to be seen. Genome sequence data are piling up, but most of the key microbial plankton clades have no cultivated representatives, and information about their ecological activities is sparse.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the phylogeny of the major plankton clades.
Figure 2: 16S rRNA genes from the Sargasso Sea metagenome data set, organized by clades.

Similar content being viewed by others

References

  1. Michaels, A. F. et al. Seasonal patterns of ocean biochemistry at the U. S. JGOFS Bermuda Atlantic Time Series study site.Deep-Sea Res.41, 1013–1038 (1994).

    Article CAS  Google Scholar 

  2. Ducklow, H. inMicrobial ecology of the oceans (ed. Kirchman, D. L.) 85–120 (Wiley-Liss, New York, 2000).

    Google Scholar 

  3. Fuhrman, J. A. & Noble, R. T. Viruses and protists cause similar bacterial mortality in coastal seawater.Limnol. Oceanogr.40, 1236–1242 (1995).

    Article ADS  Google Scholar 

  4. Carlson, C. A., Ducklow, H. W. & Michaels, A. F. Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea.Nature371, 405–408 (1994).

    Article ADS CAS  Google Scholar 

  5. Bauer, J. E., Williams, P. M. & Druffel, E. R. M.14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea.Nature357, 667–670 (1992).

    Article ADS CAS  Google Scholar 

  6. Benner, R. inBiogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 59–85 (Academic, 2002).

    Book  Google Scholar 

  7. Hansell, D. A. & Carlson, C. A. Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: control by convective overturn.Deep-Sea Res. Part Ii-Topical Studies in Oceanogr.48, 1649–1667 (2001).

    Article ADS CAS  Google Scholar 

  8. Baumann, P. & Schubert, R. H. W. inBergey's Manual of Systematic Bacteriology (eds Krieg, N. R. & Holt, J. G.) 518–544 (Williams & Wilkins, Baltimore, 1984).

    Google Scholar 

  9. Giovannoni, S. J. & Rappé, M. S. inMicrobial Ecology of the Oceans (ed. Kirchman, D. L.) 47–85 (Wiley-Liss, New York, 2000).

    Google Scholar 

  10. Britschgi, T. B. & Giovannoni, S. J. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing.Appl. Environ. Microbiol.57, 1313–1318 (1991).

    Google Scholar 

  11. Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton.Nature356, 148–149 (1992).

    Article ADS CAS PubMed  Google Scholar 

  12. Fuhrman, J. A., McCallum, K. & Davis, A. A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans.Appl. Environ. Microbiol.59, 1294–1302 (1993).

    CAS PubMed PubMed Central  Google Scholar 

  13. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton.Nature345, 60–63 (1990).

    Article ADS CAS PubMed  Google Scholar 

  14. Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing.J. Bacteriol.173, 4371–4378 (1991).

    Article CAS PubMed PubMed Central  Google Scholar 

  15. Mullins, T. D., Britschgi, T. B., Krest, R. L. & Giovannoni, S. J. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities.Limnol. Oceanogr.40, 148–158 (1995).

    Article ADS CAS  Google Scholar 

  16. DeLong, E. F. & Karl, D. M. Perspectives in microbial oceanography.Nature437, 336–342.

  17. Acinas, S. G. et al. Fine-scale phylogenetic architecture of a complex bacterial community.Nature430, 551–554 (2004).

    Article ADS CAS PubMed  Google Scholar 

  18. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea.Science304, 66–74 (2004).

    Article ADS CAS PubMed  Google Scholar 

  19. Eder, W., Schmidt, M., Koch, M., Garbe-Schonberg, D. & Huber, R. Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea.Environ. Microbiol.4, 758–763 (2002).

    Article CAS PubMed  Google Scholar 

  20. Fuhrman, J. A., McCallum, K. & Davis, A. A. Widespread archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences.Mar. Ecol. Prog. Ser.150, 275–285 (1997).

    Article ADS  Google Scholar 

  21. Giovannoni, S., Rappé, M., Vergin, K. & Adair, N. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria.Proc. Natl Acad. Sci. USA93, 7979–7984 (1996).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  22. Gordon, D. A. & Giovannoni, S. J. Stratified microbial populations related toChlorobium andFibrobacter detected in the Atlantic and Pacific Oceans.Appl. Environ. Microbiol.62, 1171–1177 (1996).

    CAS PubMed PubMed Central  Google Scholar 

  23. Wright, T. D., Vergin, K. L., Boyd, P. W. & Giovannoni, S. J. A novel delta-subdivision proteobacterial lineage from the lower ocean surface layer.Appl. Environ. Microbiol.63, 1441–1448 (1997).

    CAS PubMed PubMed Central  Google Scholar 

  24. Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean.Nature409, 507–510 (2001).

    Article ADS CAS PubMed  Google Scholar 

  25. Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities.Nature420, 806–810 (2002).

    Article ADS CAS PubMed  Google Scholar 

  26. Field, K. G. et al. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria.Appl. Environ. Microbiol.61, 63–70 (1997).

    Google Scholar 

  27. Morris, R. M., Cho, J. C., Rappé, M. S., Vergin, K. L. & Carlson, C. A. Bacterioplankton responses to deep seasonal mixing in the Sargasso Sea.Limnol. Oceanogr.50, 382–391 (2005).

    Article  Google Scholar 

  28. Rappé, M. S., Vergin, K. & Giovannoni, S. J. Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems.FEMS Microbiol. Ecol.33, 219–232 (2000).

    Article PubMed  Google Scholar 

  29. Wuchter, C., Schouten, S., Boschker, H. T. & Sinninghe Damste, J. S. Bicarbonate uptake by marine Crenarchaeota.FEMS Microbiol. Lett.219, 203–207 (2003).

    Article CAS PubMed  Google Scholar 

  30. DeLong, E. F. Archaea in coastal marine bacterioplankton.Proc. Natl Acad. Sci. USA89, 5685–5689 (1992).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  31. Zubkov, M. V. et al. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea.Environ. Microbiol.3, 304–311 (2001).

    Article CAS PubMed  Google Scholar 

  32. Zubkov, M. V., Fuchs, B. M., Tarran, G. A., Burkill, P. H. & Amann, R. High rate of uptake of organic nitrogen compounds byProchlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters.Appl. Environ. Microbiol.69, 1299–1304 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  33. Malmstrom, R. R., Kiene, R. P., Cottrell, M. T. & Kirchman, D. L. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean.Appl. Environ. Microbiol.70, 4129–4135 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Cohan, F. M. What are bacterial species?Annu. Rev. Microbiol.56, 457–487 (2002).

    Article CAS PubMed  Google Scholar 

  35. Thompson, J. R. et al. Diversity and dynamics of a north Atlantic coastalVibrio community.Appl. Environ. Microbiol.70, 4103–4110 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  36. Kimura, M. On the probability of fixation of mutant genes in populations.Genetics47, 713–719 (1962).

    CAS PubMed PubMed Central  Google Scholar 

  37. Moore, L. R., Rocap, G. & Chisholm, S. W. Physiology and molecular phylogeny of coexistingProchlorococcus ecotypes.Nature393, 464–467 (1998).

    Article ADS CAS PubMed  Google Scholar 

  38. Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. Resolution ofProchlorococcus andSynechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences.Appl. Environ. Microbiol.68, 1180–1191 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  39. Rocap, G. et al. Genome divergence in twoProchlorococcus ecotypes reflects oceanic niche differentiation.Nature424, 1042–1047 (2003).

    Article ADS CAS PubMed  Google Scholar 

  40. Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea.Science289, 1902–1906 (2000).

    Article ADS PubMed  Google Scholar 

  41. Kölber, Z. S., Van Dover, C. L., Niederman, R. A. & Falkowski, P. G. Bacterial photosynthesis in surface waters of the open ocean.Nature407, 177–179 (2000).

    Article ADS PubMed  Google Scholar 

  42. Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean.Nature411, 786–789. (2001).

    Article ADS PubMed  Google Scholar 

  43. Schwalbach, M. S., Brown, M. & Fuhrman, J. A. Impact of light on marine bacterioplankton community structure.Aquat. Microb. Ecol.39, 235–245 (2005).

    Article  Google Scholar 

  44. Man, D. et al. Diversification and spectral tuning in marine proteorhodopsins.EMBO J.22, 1725–1731 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  45. Stevenson, B. S. & Schmidt, T. M. Life history implications of rRNA gene copy number inEscherichia coli.Appl. Environ. Microbiol.70, 6670–6677 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Azam, F. & Long, R. A. Sea snow microcosms.Nature414, 495–498 (2001).

    Article ADS CAS PubMed  Google Scholar 

  47. Carlson, C. A. et al. Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea.Aquat. Microb. Ecol.30, 19–36 (2002).

    Article  Google Scholar 

  48. Fuchs, B. M., Zubkov, M. V., Sahm, K., Burkill, P. H. & Amann, R. Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques.Environ. Microbiol.2, 191–201 (2000).

    Article CAS PubMed  Google Scholar 

  49. Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade.Nature418, 630–633 (2002).

    Article ADS PubMed  Google Scholar 

  50. Dethlefsen, L. & Schmidt, T. M. Differences in codon bias cannot explain differences in translational power among microbes.BMC Bioinformatics6, 3 (2005).

    Article PubMed PubMed Central  Google Scholar 

  51. Button, D. K., Robertson, B., Gustafson, E. & Zhao, X. Experimental and theoretical bases of specific affinity, a cytoarchitecture-based formulation of nutrient collection proposed to supercede the Michaelis–Menten paradigm of microbial kinetics.Appl. Environ. Microbiol.70, 5511–5521 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  52. Kohfeld, K. E., Le Quere, C., Harrison, S. P. & Anderson, R. F. Role of marine biology in glacial-interglacial CO2 cycles.Science308, 74–78 (2005).

    Article ADS CAS PubMed  Google Scholar 

  53. DeLong, E. F., Franks, D. G. & Alldredge, A. L. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages.Limnol. Oceanogr.38, 924–934 (1993).

    Article ADS  Google Scholar 

  54. Kirchman, D. L. The ecology of Cytophaga-Flavobacteria in aquatic environments.FEMS Microbiol. Ecol.39, 91–100 (2002).

    CAS PubMed  Google Scholar 

  55. Cho, J. C., Vergin, K. L., Morris, R. M. & Giovannoni, S. J.Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum,Lentisphaerae.Environ. Microbiol.6, 611–621 (2004).

    Article CAS PubMed  Google Scholar 

  56. Suttle, C. Viruses in the sea.Nature437, 356–361 (2005).

    Article ADS CAS PubMed  Google Scholar 

  57. Mayali, X. & Azam, F. Algicidal bacteria in the sea and their impact on algal blooms.J. Eukaryot. Microbiol.51, 139–144 (2004).

    Article PubMed  Google Scholar 

  58. Egan, S., Thomas, T., Holmstrom, C. & Kjelleberg, S. Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine algaUlva lactuca.Environ. Microbiol.2, 343–347 (2000).

    Article CAS PubMed  Google Scholar 

  59. Lovejoy, C., Bowman, J. P. & Hallngraeff, G. M. Algicidal effects of a novel marinePseudoalteromonas isolate (Class Proteobacteria, Gamma subdivision) on harmful algal bloom species of the generaChattonella,Gymnodinium andHeterosigma.Appl. Environ. Microbiol.64, 2806–2813 (1998).

    CAS PubMed PubMed Central  Google Scholar 

  60. Jenkins, B. D., Steward, G. F., Short, S. M., Ward, B. B. & Zehr, J. P. Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray.Appl. Environ. Microbiol.70, 1767–1776 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  61. Zehr, J. P., Jenkins, B. D., Short, S. M. & Steward, G. F. Nitrogenase gene diversity and microbial community structure: a cross-system comparison.Environ. Microbiol.5, 539–554 (2003).

    Article CAS PubMed  Google Scholar 

  62. Montoya, J. P. et al. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean.Nature430, 1027–1032 (2004).

    Article ADS CAS PubMed  Google Scholar 

  63. Moran, M. A. et al. Genome sequence ofSilicibacter pomeroyi reveals adaptations to the marine environment.Nature432, 910–913 (2004).

    Article ADS CAS PubMed  Google Scholar 

  64. Orcutt, K. M. et al. Characterization ofTrichodesmium spp. by genetic techniques.Appl. Environ. Microbiol.68, 2236–2245 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  65. Button, D. K., Schut, F., Quang, P., Martin, R. & Robertson, B. R. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results.Appl. Environ. Microbiol.59, 881–891 (1993).

    CAS PubMed PubMed Central  Google Scholar 

  66. Vancanneyt, M. et al.Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment.Int. J. Syst. Evol. Microbiol.51, 73–79 (2001).

    Article CAS PubMed  Google Scholar 

  67. Cavicchioli, R., Ostrowski, M., Fegatella, F., Goodchild, A. & Guixa-Boixereu, N. Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective ofSphingopyxis alaskensis (formerlySphingomonas alaskensis).Microb. Ecol.45, 203–217 (2003).

    Article CAS PubMed  Google Scholar 

  68. Cho, J. C. & Giovannoni, S. J. Cultivation and growth characteristics of a diverse group of oligotrophic marine γ-Proteobacteria.Appl. Environ. Microbiol.70, 432–40 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  69. Connon, S. A. & Giovannoni, S. J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates.Appl. Environ. Microbiol.68, 3878–3885 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  70. Simu, K. & Hagstrom, A. Oligotrophic bacterioplankton with a novel single-cell life strategy.Appl. Environ. Microbiol.70, 2445–2451 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Azam, F. et al. The ecological role of water-column microbes in the sea.Mar. Ecol. Prog. Ser.10, 257–263 (1983).

    Article ADS  Google Scholar 

  72. DeLong, E. F. Microbial community genomics in the ocean.Nature Rev. Microbiol.3, 459–469 (2005).

    Article CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the NSF Microbial Observatories Program and a grant from the Gordon and Betty Moore Foundation.

Author information

Authors and Affiliations

  1. Department of Microbiology, Oregon State University, Corvallis, 97331, Oregon, USA

    Stephen J. Giovannoni & Ulrich Stingl

Authors
  1. Stephen J. Giovannoni
  2. Ulrich Stingl

Corresponding author

Correspondence toStephen J. Giovannoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

About this article

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp