- Review Article
- Published:
Molecular diversity and ecology of microbial plankton
Naturevolume 437, pages343–348 (2005)Cite this article
6820Accesses
420Citations
15Altmetric
Abstract
The history of microbial evolution in the oceans is probably as old as the history of life itself. In contrast to terrestrial ecosystems, microorganisms are the main form of biomass in the oceans, and form some of the largest populations on the planet. Theory predicts that selection should act more efficiently in large populations. But whether microbial plankton populations harbour organisms that are models of adaptive sophistication remains to be seen. Genome sequence data are piling up, but most of the key microbial plankton clades have no cultivated representatives, and information about their ecological activities is sparse.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Michaels, A. F. et al. Seasonal patterns of ocean biochemistry at the U. S. JGOFS Bermuda Atlantic Time Series study site.Deep-Sea Res.41, 1013–1038 (1994).
Ducklow, H. inMicrobial ecology of the oceans (ed. Kirchman, D. L.) 85–120 (Wiley-Liss, New York, 2000).
Fuhrman, J. A. & Noble, R. T. Viruses and protists cause similar bacterial mortality in coastal seawater.Limnol. Oceanogr.40, 1236–1242 (1995).
Carlson, C. A., Ducklow, H. W. & Michaels, A. F. Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea.Nature371, 405–408 (1994).
Bauer, J. E., Williams, P. M. & Druffel, E. R. M.14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea.Nature357, 667–670 (1992).
Benner, R. inBiogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 59–85 (Academic, 2002).
Hansell, D. A. & Carlson, C. A. Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: control by convective overturn.Deep-Sea Res. Part Ii-Topical Studies in Oceanogr.48, 1649–1667 (2001).
Baumann, P. & Schubert, R. H. W. inBergey's Manual of Systematic Bacteriology (eds Krieg, N. R. & Holt, J. G.) 518–544 (Williams & Wilkins, Baltimore, 1984).
Giovannoni, S. J. & Rappé, M. S. inMicrobial Ecology of the Oceans (ed. Kirchman, D. L.) 47–85 (Wiley-Liss, New York, 2000).
Britschgi, T. B. & Giovannoni, S. J. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing.Appl. Environ. Microbiol.57, 1313–1318 (1991).
Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton.Nature356, 148–149 (1992).
Fuhrman, J. A., McCallum, K. & Davis, A. A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans.Appl. Environ. Microbiol.59, 1294–1302 (1993).
Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton.Nature345, 60–63 (1990).
Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing.J. Bacteriol.173, 4371–4378 (1991).
Mullins, T. D., Britschgi, T. B., Krest, R. L. & Giovannoni, S. J. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities.Limnol. Oceanogr.40, 148–158 (1995).
DeLong, E. F. & Karl, D. M. Perspectives in microbial oceanography.Nature437, 336–342.
Acinas, S. G. et al. Fine-scale phylogenetic architecture of a complex bacterial community.Nature430, 551–554 (2004).
Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea.Science304, 66–74 (2004).
Eder, W., Schmidt, M., Koch, M., Garbe-Schonberg, D. & Huber, R. Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea.Environ. Microbiol.4, 758–763 (2002).
Fuhrman, J. A., McCallum, K. & Davis, A. A. Widespread archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences.Mar. Ecol. Prog. Ser.150, 275–285 (1997).
Giovannoni, S., Rappé, M., Vergin, K. & Adair, N. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria.Proc. Natl Acad. Sci. USA93, 7979–7984 (1996).
Gordon, D. A. & Giovannoni, S. J. Stratified microbial populations related toChlorobium andFibrobacter detected in the Atlantic and Pacific Oceans.Appl. Environ. Microbiol.62, 1171–1177 (1996).
Wright, T. D., Vergin, K. L., Boyd, P. W. & Giovannoni, S. J. A novel delta-subdivision proteobacterial lineage from the lower ocean surface layer.Appl. Environ. Microbiol.63, 1441–1448 (1997).
Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean.Nature409, 507–510 (2001).
Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities.Nature420, 806–810 (2002).
Field, K. G. et al. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria.Appl. Environ. Microbiol.61, 63–70 (1997).
Morris, R. M., Cho, J. C., Rappé, M. S., Vergin, K. L. & Carlson, C. A. Bacterioplankton responses to deep seasonal mixing in the Sargasso Sea.Limnol. Oceanogr.50, 382–391 (2005).
Rappé, M. S., Vergin, K. & Giovannoni, S. J. Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems.FEMS Microbiol. Ecol.33, 219–232 (2000).
Wuchter, C., Schouten, S., Boschker, H. T. & Sinninghe Damste, J. S. Bicarbonate uptake by marine Crenarchaeota.FEMS Microbiol. Lett.219, 203–207 (2003).
DeLong, E. F. Archaea in coastal marine bacterioplankton.Proc. Natl Acad. Sci. USA89, 5685–5689 (1992).
Zubkov, M. V. et al. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea.Environ. Microbiol.3, 304–311 (2001).
Zubkov, M. V., Fuchs, B. M., Tarran, G. A., Burkill, P. H. & Amann, R. High rate of uptake of organic nitrogen compounds byProchlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters.Appl. Environ. Microbiol.69, 1299–1304 (2003).
Malmstrom, R. R., Kiene, R. P., Cottrell, M. T. & Kirchman, D. L. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean.Appl. Environ. Microbiol.70, 4129–4135 (2004).
Cohan, F. M. What are bacterial species?Annu. Rev. Microbiol.56, 457–487 (2002).
Thompson, J. R. et al. Diversity and dynamics of a north Atlantic coastalVibrio community.Appl. Environ. Microbiol.70, 4103–4110 (2004).
Kimura, M. On the probability of fixation of mutant genes in populations.Genetics47, 713–719 (1962).
Moore, L. R., Rocap, G. & Chisholm, S. W. Physiology and molecular phylogeny of coexistingProchlorococcus ecotypes.Nature393, 464–467 (1998).
Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. Resolution ofProchlorococcus andSynechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences.Appl. Environ. Microbiol.68, 1180–1191 (2002).
Rocap, G. et al. Genome divergence in twoProchlorococcus ecotypes reflects oceanic niche differentiation.Nature424, 1042–1047 (2003).
Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea.Science289, 1902–1906 (2000).
Kölber, Z. S., Van Dover, C. L., Niederman, R. A. & Falkowski, P. G. Bacterial photosynthesis in surface waters of the open ocean.Nature407, 177–179 (2000).
Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean.Nature411, 786–789. (2001).
Schwalbach, M. S., Brown, M. & Fuhrman, J. A. Impact of light on marine bacterioplankton community structure.Aquat. Microb. Ecol.39, 235–245 (2005).
Man, D. et al. Diversification and spectral tuning in marine proteorhodopsins.EMBO J.22, 1725–1731 (2003).
Stevenson, B. S. & Schmidt, T. M. Life history implications of rRNA gene copy number inEscherichia coli.Appl. Environ. Microbiol.70, 6670–6677 (2004).
Azam, F. & Long, R. A. Sea snow microcosms.Nature414, 495–498 (2001).
Carlson, C. A. et al. Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea.Aquat. Microb. Ecol.30, 19–36 (2002).
Fuchs, B. M., Zubkov, M. V., Sahm, K., Burkill, P. H. & Amann, R. Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques.Environ. Microbiol.2, 191–201 (2000).
Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade.Nature418, 630–633 (2002).
Dethlefsen, L. & Schmidt, T. M. Differences in codon bias cannot explain differences in translational power among microbes.BMC Bioinformatics6, 3 (2005).
Button, D. K., Robertson, B., Gustafson, E. & Zhao, X. Experimental and theoretical bases of specific affinity, a cytoarchitecture-based formulation of nutrient collection proposed to supercede the Michaelis–Menten paradigm of microbial kinetics.Appl. Environ. Microbiol.70, 5511–5521 (2004).
Kohfeld, K. E., Le Quere, C., Harrison, S. P. & Anderson, R. F. Role of marine biology in glacial-interglacial CO2 cycles.Science308, 74–78 (2005).
DeLong, E. F., Franks, D. G. & Alldredge, A. L. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages.Limnol. Oceanogr.38, 924–934 (1993).
Kirchman, D. L. The ecology of Cytophaga-Flavobacteria in aquatic environments.FEMS Microbiol. Ecol.39, 91–100 (2002).
Cho, J. C., Vergin, K. L., Morris, R. M. & Giovannoni, S. J.Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum,Lentisphaerae.Environ. Microbiol.6, 611–621 (2004).
Suttle, C. Viruses in the sea.Nature437, 356–361 (2005).
Mayali, X. & Azam, F. Algicidal bacteria in the sea and their impact on algal blooms.J. Eukaryot. Microbiol.51, 139–144 (2004).
Egan, S., Thomas, T., Holmstrom, C. & Kjelleberg, S. Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine algaUlva lactuca.Environ. Microbiol.2, 343–347 (2000).
Lovejoy, C., Bowman, J. P. & Hallngraeff, G. M. Algicidal effects of a novel marinePseudoalteromonas isolate (Class Proteobacteria, Gamma subdivision) on harmful algal bloom species of the generaChattonella,Gymnodinium andHeterosigma.Appl. Environ. Microbiol.64, 2806–2813 (1998).
Jenkins, B. D., Steward, G. F., Short, S. M., Ward, B. B. & Zehr, J. P. Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray.Appl. Environ. Microbiol.70, 1767–1776 (2004).
Zehr, J. P., Jenkins, B. D., Short, S. M. & Steward, G. F. Nitrogenase gene diversity and microbial community structure: a cross-system comparison.Environ. Microbiol.5, 539–554 (2003).
Montoya, J. P. et al. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean.Nature430, 1027–1032 (2004).
Moran, M. A. et al. Genome sequence ofSilicibacter pomeroyi reveals adaptations to the marine environment.Nature432, 910–913 (2004).
Orcutt, K. M. et al. Characterization ofTrichodesmium spp. by genetic techniques.Appl. Environ. Microbiol.68, 2236–2245 (2002).
Button, D. K., Schut, F., Quang, P., Martin, R. & Robertson, B. R. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results.Appl. Environ. Microbiol.59, 881–891 (1993).
Vancanneyt, M. et al.Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment.Int. J. Syst. Evol. Microbiol.51, 73–79 (2001).
Cavicchioli, R., Ostrowski, M., Fegatella, F., Goodchild, A. & Guixa-Boixereu, N. Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective ofSphingopyxis alaskensis (formerlySphingomonas alaskensis).Microb. Ecol.45, 203–217 (2003).
Cho, J. C. & Giovannoni, S. J. Cultivation and growth characteristics of a diverse group of oligotrophic marine γ-Proteobacteria.Appl. Environ. Microbiol.70, 432–40 (2004).
Connon, S. A. & Giovannoni, S. J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates.Appl. Environ. Microbiol.68, 3878–3885 (2002).
Simu, K. & Hagstrom, A. Oligotrophic bacterioplankton with a novel single-cell life strategy.Appl. Environ. Microbiol.70, 2445–2451 (2004).
Azam, F. et al. The ecological role of water-column microbes in the sea.Mar. Ecol. Prog. Ser.10, 257–263 (1983).
DeLong, E. F. Microbial community genomics in the ocean.Nature Rev. Microbiol.3, 459–469 (2005).
Acknowledgements
This work was supported by a research grant from the NSF Microbial Observatories Program and a grant from the Gordon and Betty Moore Foundation.
Author information
Authors and Affiliations
Department of Microbiology, Oregon State University, Corvallis, 97331, Oregon, USA
Stephen J. Giovannoni & Ulrich Stingl
- Stephen J. Giovannoni
Search author on:PubMed Google Scholar
- Ulrich Stingl
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toStephen J. Giovannoni.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.
Rights and permissions
About this article
Cite this article
Giovannoni, S., Stingl, U. Molecular diversity and ecology of microbial plankton.Nature437, 343–348 (2005). https://doi.org/10.1038/nature04158
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Atmospheric deposition and river runoff stimulate the utilization of dissolved organic phosphorus in coastal seas
- Haoyu Jin
- Chao Zhang
- Huiwang Gao
Nature Communications (2024)
Five Years Measuring the Muck: Evaluating Interannual Variability of Nutrient Loads From Tidal Flooding
- Alfonso Macías-Tapia
- Margaret R. Mulholland
- Peter W. Bernhardt
Estuaries and Coasts (2023)
Vertical microbial profiling of water column reveals prokaryotic communities and distribution features of Antarctic Peninsula
- Jiang Li
- Luying Zhao
- Ao Zhang
Acta Oceanologica Sinica (2023)
Emergent community architecture despite distinct diversity in the global whale shark (Rhincodon typus) epidermal microbiome
- Michael P. Doane
- Michael B. Reed
- Elizabeth A. Dinsdale
Scientific Reports (2023)
The southwestern South Atlantic continental shelf biogeochemical divide
- Andréa da Consolação de Oliveira Carvalho
- Rodrigo Kerr
- Carlos Rafael B. Mendes
Biogeochemistry (2022)


