- Article
- Published:
Simulations of the formation, evolution and clustering of galaxies and quasars
- Volker Springel1,
- Simon D. M. White1,
- Adrian Jenkins2,
- Carlos S. Frenk2,
- Naoki Yoshida3,
- Liang Gao1,
- Julio Navarro4,
- Robert Thacker5,
- Darren Croton1,
- John Helly2,
- John A. Peacock6,
- Shaun Cole2,
- Peter Thomas7,
- Hugh Couchman5,
- August Evrard8,
- Jörg Colberg9 &
- …
- Frazer Pearce10
Naturevolume 435, pages629–636 (2005)Cite this article
16kAccesses
4352Citations
20Altmetric
Abstract
The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,1603 particles, following them from redshiftz = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Bennett, C. L. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results.Astrophys. J. Suppl.148, 1–27 (2003)
Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters.Astrophys. J. Suppl.148, 175–194 (2003)
Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant.Astron. J.116, 1009–1038 (1998)
Perlmutter, S. et al. Measurements of omega and lambda from 42 high-redshift supernovae.Astrophys. J.517, 565–586 (1999)
White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. The baryon content of galaxy clusters: a challenge to cosmological orthodoxy.Nature366, 429–433 (1993)
Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter.Astrophys. J.292, 371–394 (1985)
Colberg, J. M. et al. Clustering of galaxy clusters in cold dark matter universes.Mon. Not. R. Astron. Soc.319, 209–214 (2000)
Evrard, A. E. et al. Galaxy clusters in Hubble volume simulations: Cosmological constraints from sky survey populations.Astrophys. J.573, 7–36 (2002)
Wambsganss, J., Bode, P. & Ostriker, J. P. Giant arc statistics in concord with a concordance lambda cold dark matter universe.Astrophys. J.606, L93–L96 (2004)
Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web.Nature380, 603–606 (1996)
Jenkins, A. et al. The mass function of dark matter haloes.Mon. Not. R. Astron. Soc.321, 372–384 (2001)
Reed, D. et al. Evolution of the mass function of dark matter haloes.Mon. Not. R. Astron. Soc.346, 565–572 (2003)
Sheth, R. K. & Tormen, G. An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier.Mon. Not. R. Astron. Soc.329, 61–75 (2002)
Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation.Astrophys. J.187, 425–438 (1974)
Efstathiou, G. & Rees, M. J. High-redshift quasars in the Cold Dark Matter cosmogony.Mon. Not. R. Astron. Soc.230, 5–11 (1988)
Springel, V., White, S. D. M., Tormen, G. & Kauffmann, G. Populating a cluster of galaxies. – I. Results at z = 0.Mon. Not. R. Astron. Soc.328, 726–750 (2001)
Kauffmann, G. & Haehnelt, M. A unified model for the evolution of galaxies and quasars.Mon. Not. R. Astron. Soc.311, 576–588 (2000)
White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering.Astrophys. J.379, 52–79 (1991)
Kauffmann, G., White, S. D. M. & Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes.Mon. Not. R. Astron. Soc.264, 201–218 (1993)
Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F. & Zepf, S. E. A recipe for galaxy formation.Mon. Not. R. Astron. Soc.271, 781–806 (1994)
Baugh, C. M., Cole, S. & Frenk, C. S. Evolution of the Hubble sequence in hierarchical models for galaxy formation.Mon. Not. R. Astron. Soc.283, 1361–1378 (1996)
Somerville, R. S. & Primack, J. R. Semi-analytic modelling of galaxy formation: the local Universe.Mon. Not. R. Astron. Soc.310, 1087–1110 (1999)
Kauffmann, G., Colberg, J. M., Diaferio, A. & White, S. D. M. Clustering of galaxies in a hierarchical universe. – I. Methods and results at z = 0.Mon. Not. R. Astron. Soc.303, 188–206 (1999)
Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6.Astron. J.125, 1649–1659 (2003)
Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. III. Discovery of five additional quasars.Astron. J.128, 515–522 (2004)
Tremaine, S. et al. The slope of the black hole mass versus velocity dispersion correlation.Astrophys. J.574, 740–753 (2002)
Merritt, D. & Ferrarese, L. Black hole demographics from the MBH-σ relation.Mon. Not. R. Astron. Soc.320, L30–L34 (2001)
Hawkins, E. et al. The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the universe.Mon. Not. R. Astron. Soc.346, 78–96 (2003)
Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M. & Lacey, C. G. The nature of galaxy bias and clustering.Mon. Not. R. Astron. Soc.311, 793–808 (2000)
Weinberg, D. H., Davé, R., Katz, N. & Hernquist, L. Galaxy clustering and galaxy bias in a ΛCDM universe.Astrophys. J.601, 1–21 (2004)
Padilla, N. D. & Baugh, C. M. The power spectrum of galaxy clustering in the APM survey.Mon. Not. R. Astron. Soc.343, 796–812 (2003)
Zehavi, I. et al. On departures from a power law in the galaxy correlation function.Astrophys. J.608, 16–24 (2004)
Norberg, P. et al. The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering.Mon. Not. R. Astron. Soc.328, 64–70 (2001)
Zehavi, I. et al. Galaxy clustering in early Sloan Digital Sky Survey redshift data.Astrophys. J.571, 172–190 (2002)
Madgwick, D. S. et al. The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type.Mon. Not. R. Astron. Soc.344, 847–856 (2003)
de Bernardis, P. et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation.Nature404, 955–959 (2000)
Mauskopf, P. D. et al. Measurement of a peak in the Cosmic Microwave Background power spectrum from the North American test flight of Boomerang.Astrophys. J.536, L59–L62 (2000)
Blake, C. & Glazebrook, K. Probing dark energy using baryonic oscillations in the galaxy power spectrum as a cosmological ruler.Astrophys. J.594, 665–673 (2003)
Jenkins, A. et al. Evolution of structure in cold dark matter universes.Astrophys. J.499, 20–40 (1998)
Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. The statistics of peaks of Gaussian random fields.Astrophys. J.304, 15–61 (1986)
Adelberger, K. L. et al. A counts-in-cells analysis of Lyman-break galaxies at redshift Z = 3.Astrophys. J.505, 18–24 (1998)
Cole, S. et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications.Mon. Not. R. Astron. Soc. (submitted); preprint athttp://xxx.lanl.gov/astro-ph/0501174 (2005)
Eisenstein, D. J. et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies.Astrophys. J. (submitted); preprint athttp://xxx.lanl.gov/astro-ph/0501171 (2005)
Springel, V., Yoshida, N. & White, S. D. M. GADGET: a code for collisionless and gasdynamical cosmological simulations.N. Astron.6, 79–117 (2001)
Xu, G. A new parallel n-body gravity solver: TPM.Astrophys. J. Suppl.98, 355–366 (1995)
Barnes, J. & Hut, P. A hierarchicalO(N logN) force-calculation algorithm.Nature324, 446–449 (1986)
Hockney, R. W. & Eastwood, J. W.Computer Simulation Using Particles Ch. 5 (McGraw-Hill, New York, 1981)
Colless, M. et al. The 2dF Galaxy Redshift Survey: spectra and redshifts.Mon. Not. R. Astron. Soc.328, 1039–1063 (2001)
White, S. D. M. inCosmology and Large-Scale Structure (eds Schaefer, R., Silk, J., Spiro, M. & Zinn-Justin, J.) Ch. 8 (Elsevier, Dordrecht, 1996)
Seljak, U. & Zaldarriaga, M. A line-of-sight integration approach to Cosmic Microwave Background anisotropies.Astrophys. J.469, 437–444 (1996)
Acknowledgements
The computations reported here were performed at the Rechenzentrum der Max-Planck-Gesellschaft in Garching, Germany.
Author information
Authors and Affiliations
Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85740, Garching, Germany
Volker Springel, Simon D. M. White, Liang Gao & Darren Croton
Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, DH1 3LE, Durham, UK
Adrian Jenkins, Carlos S. Frenk, John Helly & Shaun Cole
Department of Physics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
Naoki Yoshida
Department of Physics & Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
Julio Navarro
Department of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
Robert Thacker & Hugh Couchman
Institute of Astronomy, University of Edinburgh, Blackford Hill, EH9 3HJ, Edinburgh, UK
John A. Peacock
Department of Physics & Astronomy, University of Sussex, BN1 9QH, Falmer, Brighton, UK
Peter Thomas
Department of Physics & Astronomy, University of Michigan, Ann Arbor, Michigan, 48109-1120, USA
August Evrard
Department of Physics & Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, Pennsylvania, 15260, USA
Jörg Colberg
Physics and Astronomy Department, University of Nottingham, Nottingham, NG7 2RD, UK
Frazer Pearce
- Volker Springel
Search author on:PubMed Google Scholar
- Simon D. M. White
Search author on:PubMed Google Scholar
- Adrian Jenkins
Search author on:PubMed Google Scholar
- Carlos S. Frenk
Search author on:PubMed Google Scholar
- Naoki Yoshida
Search author on:PubMed Google Scholar
- Liang Gao
Search author on:PubMed Google Scholar
- Julio Navarro
Search author on:PubMed Google Scholar
- Robert Thacker
Search author on:PubMed Google Scholar
- Darren Croton
Search author on:PubMed Google Scholar
- John Helly
Search author on:PubMed Google Scholar
- John A. Peacock
Search author on:PubMed Google Scholar
- Shaun Cole
Search author on:PubMed Google Scholar
- Peter Thomas
Search author on:PubMed Google Scholar
- Hugh Couchman
Search author on:PubMed Google Scholar
- August Evrard
Search author on:PubMed Google Scholar
- Jörg Colberg
Search author on:PubMed Google Scholar
- Frazer Pearce
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toVolker Springel.
Ethics declarations
Competing interests
Reprints and permissions information is available atnpg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.
Supplementary information
Supplementary Methods
This details the physical model used to compute the galaxy population, and gives a short summary of the simulation method. Where appropriate, further references to relevant literature for our methodology are included. (PDF 255 kb)
Supplementary Video
This computer animation visualizes the dark matter distribution of the simulated universe at the present epoch, in a slice of thickness 15 Mpc/h. A zoom over several decades in length-scale onto one of the many rich clusters of galaxies is shown, highlighting the morphology of structure of the universe on different scales as well as the large dynamic range of the millennium simulation. (To play this high-resolution movie on Windows or Apple computers, you may have to install the `divx'-codec, available for free atwww.divx.com). (AVI 11065 kb)
Rights and permissions
About this article
Cite this article
Springel, V., White, S., Jenkins, A.et al. Simulations of the formation, evolution and clustering of galaxies and quasars.Nature435, 629–636 (2005). https://doi.org/10.1038/nature03597
Received:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Dark matter halo mass functions and density profiles from mass and energy cascade
- Zhijie Xu
Scientific Reports (2023)
Strong gravitational lensing by AGNs as a probe of the quasar–host relations in the distant Universe
- Martin Millon
- Frédéric Courbin
- S. G. Djorgovski
Nature Astronomy (2023)
Black hole evolution in the Bondi–Hoyle–Lyttleton accretion model
- Daniele Gregoris
General Relativity and Gravitation (2023)
Multi-wavelength search for quasi-periodic oscillations in BL Lac 4FGL J0112.1+2245
- Y. L. Gong
- T. F. Yi
- Z. H. Chen
Astrophysics and Space Science (2022)


