Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Simulations of the formation, evolution and clustering of galaxies and quasars

Naturevolume 435pages629–636 (2005)Cite this article

Abstract

The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,1603 particles, following them from redshiftz = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1:The dark matter density field on various scales.
Figure 2:Differential halo number density as a function of mass and epoch.
Figure 3:Environment of a ‘first quasar candidate’ at high and low redshifts.
Figure 4:Galaxy two-point correlation function,ξ(r), at the present epoch as a function of separationr.
Figure 5:Galaxy clustering as a function of luminosity and colour.
Figure 6:Power spectra of the dark matter and galaxy distributions in the baryon oscillation region.

Similar content being viewed by others

References

  1. Bennett, C. L. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results.Astrophys. J. Suppl.148, 1–27 (2003)

    Article ADS  Google Scholar 

  2. Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters.Astrophys. J. Suppl.148, 175–194 (2003)

    Article ADS  Google Scholar 

  3. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant.Astron. J.116, 1009–1038 (1998)

    Article ADS  Google Scholar 

  4. Perlmutter, S. et al. Measurements of omega and lambda from 42 high-redshift supernovae.Astrophys. J.517, 565–586 (1999)

    Article ADS  Google Scholar 

  5. White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. The baryon content of galaxy clusters: a challenge to cosmological orthodoxy.Nature366, 429–433 (1993)

    Article ADS CAS  Google Scholar 

  6. Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter.Astrophys. J.292, 371–394 (1985)

    Article ADS CAS  Google Scholar 

  7. Colberg, J. M. et al. Clustering of galaxy clusters in cold dark matter universes.Mon. Not. R. Astron. Soc.319, 209–214 (2000)

    Article ADS CAS  Google Scholar 

  8. Evrard, A. E. et al. Galaxy clusters in Hubble volume simulations: Cosmological constraints from sky survey populations.Astrophys. J.573, 7–36 (2002)

    Article ADS  Google Scholar 

  9. Wambsganss, J., Bode, P. & Ostriker, J. P. Giant arc statistics in concord with a concordance lambda cold dark matter universe.Astrophys. J.606, L93–L96 (2004)

    Article ADS  Google Scholar 

  10. Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web.Nature380, 603–606 (1996)

    Article ADS CAS  Google Scholar 

  11. Jenkins, A. et al. The mass function of dark matter haloes.Mon. Not. R. Astron. Soc.321, 372–384 (2001)

    Article ADS CAS  Google Scholar 

  12. Reed, D. et al. Evolution of the mass function of dark matter haloes.Mon. Not. R. Astron. Soc.346, 565–572 (2003)

    Article ADS  Google Scholar 

  13. Sheth, R. K. & Tormen, G. An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier.Mon. Not. R. Astron. Soc.329, 61–75 (2002)

    Article ADS  Google Scholar 

  14. Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation.Astrophys. J.187, 425–438 (1974)

    Article ADS  Google Scholar 

  15. Efstathiou, G. & Rees, M. J. High-redshift quasars in the Cold Dark Matter cosmogony.Mon. Not. R. Astron. Soc.230, 5–11 (1988)

    Article ADS  Google Scholar 

  16. Springel, V., White, S. D. M., Tormen, G. & Kauffmann, G. Populating a cluster of galaxies. – I. Results at z = 0.Mon. Not. R. Astron. Soc.328, 726–750 (2001)

    Article ADS  Google Scholar 

  17. Kauffmann, G. & Haehnelt, M. A unified model for the evolution of galaxies and quasars.Mon. Not. R. Astron. Soc.311, 576–588 (2000)

    Article ADS  Google Scholar 

  18. White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering.Astrophys. J.379, 52–79 (1991)

    Article ADS  Google Scholar 

  19. Kauffmann, G., White, S. D. M. & Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes.Mon. Not. R. Astron. Soc.264, 201–218 (1993)

    Article ADS CAS  Google Scholar 

  20. Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F. & Zepf, S. E. A recipe for galaxy formation.Mon. Not. R. Astron. Soc.271, 781–806 (1994)

    Article ADS  Google Scholar 

  21. Baugh, C. M., Cole, S. & Frenk, C. S. Evolution of the Hubble sequence in hierarchical models for galaxy formation.Mon. Not. R. Astron. Soc.283, 1361–1378 (1996)

    Article ADS  Google Scholar 

  22. Somerville, R. S. & Primack, J. R. Semi-analytic modelling of galaxy formation: the local Universe.Mon. Not. R. Astron. Soc.310, 1087–1110 (1999)

    Article ADS CAS  Google Scholar 

  23. Kauffmann, G., Colberg, J. M., Diaferio, A. & White, S. D. M. Clustering of galaxies in a hierarchical universe. – I. Methods and results at z = 0.Mon. Not. R. Astron. Soc.303, 188–206 (1999)

    Article ADS  Google Scholar 

  24. Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6.Astron. J.125, 1649–1659 (2003)

    Article ADS  Google Scholar 

  25. Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. III. Discovery of five additional quasars.Astron. J.128, 515–522 (2004)

    Article ADS CAS  Google Scholar 

  26. Tremaine, S. et al. The slope of the black hole mass versus velocity dispersion correlation.Astrophys. J.574, 740–753 (2002)

    Article ADS  Google Scholar 

  27. Merritt, D. & Ferrarese, L. Black hole demographics from the MBH-σ relation.Mon. Not. R. Astron. Soc.320, L30–L34 (2001)

    Article ADS  Google Scholar 

  28. Hawkins, E. et al. The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the universe.Mon. Not. R. Astron. Soc.346, 78–96 (2003)

    Article ADS CAS  Google Scholar 

  29. Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M. & Lacey, C. G. The nature of galaxy bias and clustering.Mon. Not. R. Astron. Soc.311, 793–808 (2000)

    Article ADS CAS  Google Scholar 

  30. Weinberg, D. H., Davé, R., Katz, N. & Hernquist, L. Galaxy clustering and galaxy bias in a ΛCDM universe.Astrophys. J.601, 1–21 (2004)

    Article ADS CAS  Google Scholar 

  31. Padilla, N. D. & Baugh, C. M. The power spectrum of galaxy clustering in the APM survey.Mon. Not. R. Astron. Soc.343, 796–812 (2003)

    Article ADS  Google Scholar 

  32. Zehavi, I. et al. On departures from a power law in the galaxy correlation function.Astrophys. J.608, 16–24 (2004)

    Article ADS CAS  Google Scholar 

  33. Norberg, P. et al. The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering.Mon. Not. R. Astron. Soc.328, 64–70 (2001)

    Article ADS  Google Scholar 

  34. Zehavi, I. et al. Galaxy clustering in early Sloan Digital Sky Survey redshift data.Astrophys. J.571, 172–190 (2002)

    Article ADS  Google Scholar 

  35. Madgwick, D. S. et al. The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type.Mon. Not. R. Astron. Soc.344, 847–856 (2003)

    Article ADS  Google Scholar 

  36. de Bernardis, P. et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation.Nature404, 955–959 (2000)

    Article ADS CAS  Google Scholar 

  37. Mauskopf, P. D. et al. Measurement of a peak in the Cosmic Microwave Background power spectrum from the North American test flight of Boomerang.Astrophys. J.536, L59–L62 (2000)

    Article ADS CAS  Google Scholar 

  38. Blake, C. & Glazebrook, K. Probing dark energy using baryonic oscillations in the galaxy power spectrum as a cosmological ruler.Astrophys. J.594, 665–673 (2003)

    Article ADS CAS  Google Scholar 

  39. Jenkins, A. et al. Evolution of structure in cold dark matter universes.Astrophys. J.499, 20–40 (1998)

    Article ADS  Google Scholar 

  40. Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. The statistics of peaks of Gaussian random fields.Astrophys. J.304, 15–61 (1986)

    Article ADS CAS  Google Scholar 

  41. Adelberger, K. L. et al. A counts-in-cells analysis of Lyman-break galaxies at redshift Z = 3.Astrophys. J.505, 18–24 (1998)

    Article ADS  Google Scholar 

  42. Cole, S. et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications.Mon. Not. R. Astron. Soc. (submitted); preprint athttp://xxx.lanl.gov/astro-ph/0501174 (2005)

  43. Eisenstein, D. J. et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies.Astrophys. J. (submitted); preprint athttp://xxx.lanl.gov/astro-ph/0501171 (2005)

  44. Springel, V., Yoshida, N. & White, S. D. M. GADGET: a code for collisionless and gasdynamical cosmological simulations.N. Astron.6, 79–117 (2001)

    Article ADS CAS  Google Scholar 

  45. Xu, G. A new parallel n-body gravity solver: TPM.Astrophys. J. Suppl.98, 355–366 (1995)

    Article ADS  Google Scholar 

  46. Barnes, J. & Hut, P. A hierarchicalO(N logN) force-calculation algorithm.Nature324, 446–449 (1986)

    Article ADS  Google Scholar 

  47. Hockney, R. W. & Eastwood, J. W.Computer Simulation Using Particles Ch. 5 (McGraw-Hill, New York, 1981)

    MATH  Google Scholar 

  48. Colless, M. et al. The 2dF Galaxy Redshift Survey: spectra and redshifts.Mon. Not. R. Astron. Soc.328, 1039–1063 (2001)

    Article ADS  Google Scholar 

  49. White, S. D. M. inCosmology and Large-Scale Structure (eds Schaefer, R., Silk, J., Spiro, M. & Zinn-Justin, J.) Ch. 8 (Elsevier, Dordrecht, 1996)

    Google Scholar 

  50. Seljak, U. & Zaldarriaga, M. A line-of-sight integration approach to Cosmic Microwave Background anisotropies.Astrophys. J.469, 437–444 (1996)

    Article ADS CAS  Google Scholar 

Download references

Acknowledgements

The computations reported here were performed at the Rechenzentrum der Max-Planck-Gesellschaft in Garching, Germany.

Author information

Authors and Affiliations

  1. Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85740, Garching, Germany

    Volker Springel, Simon D. M. White, Liang Gao & Darren Croton

  2. Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, DH1 3LE, Durham, UK

    Adrian Jenkins, Carlos S. Frenk, John Helly & Shaun Cole

  3. Department of Physics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan

    Naoki Yoshida

  4. Department of Physics & Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada

    Julio Navarro

  5. Department of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada

    Robert Thacker & Hugh Couchman

  6. Institute of Astronomy, University of Edinburgh, Blackford Hill, EH9 3HJ, Edinburgh, UK

    John A. Peacock

  7. Department of Physics & Astronomy, University of Sussex, BN1 9QH, Falmer, Brighton, UK

    Peter Thomas

  8. Department of Physics & Astronomy, University of Michigan, Ann Arbor, Michigan, 48109-1120, USA

    August Evrard

  9. Department of Physics & Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, Pennsylvania, 15260, USA

    Jörg Colberg

  10. Physics and Astronomy Department, University of Nottingham, Nottingham, NG7 2RD, UK

    Frazer Pearce

Authors
  1. Volker Springel
  2. Simon D. M. White
  3. Adrian Jenkins
  4. Carlos S. Frenk
  5. Naoki Yoshida
  6. Liang Gao
  7. Julio Navarro
  8. Robert Thacker
  9. Darren Croton
  10. John Helly
  11. John A. Peacock
  12. Shaun Cole
  13. Peter Thomas
  14. Hugh Couchman
  15. August Evrard
  16. Jörg Colberg
  17. Frazer Pearce

Corresponding author

Correspondence toVolker Springel.

Ethics declarations

Competing interests

Reprints and permissions information is available atnpg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

This details the physical model used to compute the galaxy population, and gives a short summary of the simulation method. Where appropriate, further references to relevant literature for our methodology are included. (PDF 255 kb)

Supplementary Video

This computer animation visualizes the dark matter distribution of the simulated universe at the present epoch, in a slice of thickness 15 Mpc/h. A zoom over several decades in length-scale onto one of the many rich clusters of galaxies is shown, highlighting the morphology of structure of the universe on different scales as well as the large dynamic range of the millennium simulation. (To play this high-resolution movie on Windows or Apple computers, you may have to install the `divx'-codec, available for free atwww.divx.com). (AVI 11065 kb)

Rights and permissions

About this article

Cite this article

Springel, V., White, S., Jenkins, A.et al. Simulations of the formation, evolution and clustering of galaxies and quasars.Nature435, 629–636 (2005). https://doi.org/10.1038/nature03597

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Evolution of the universe

Computer simulations have been used to blend the giant snapshot of cosmic history provided by modern galaxy surveys into a coherent picture displaying the underlying physical processes of galaxy formation and evolution. The growth of 20 million galaxies in a huge cosmological volume was modelled and it proved possible to identify the unusual formation sites and eventual fate of the first bright quasars. It was shown that large surveys are likely to include features in the galaxy distribution that directly reflect physics in the early Universe and may clarify the nature of the mysterious dark energy driving its current accelerated expansion. The cover shows the distribution of dark matter in a slice of thickness 60 million lightyears through the simulated universe.

Associated content

Digitizing the Universe

  • Nickolay Y. Gnedin
NatureNews & Views

Advertisement

Coming soon

We're working on ways to enable issue downloads.

Go to issue

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp