Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis

Naturevolume 434pages864–870 (2005)Cite this article

Abstract

During the evolution of cancer, the incipient tumour experiences ‘oncogenic stress’, which evokes a counter-response to eliminate such hazardous cells. However, the nature of this stress remains elusive, as does the inducible anti-cancer barrier that elicits growth arrest or cell death. Here we show that in clinical specimens from different stages of human tumours of the urinary bladder, breast, lung and colon, the early precursor lesions (but not normal tissues) commonly express markers of an activated DNA damage response. These include phosphorylated kinases ATM and Chk2, and phosphorylated histone H2AX and p53. Similar checkpoint responses were induced in cultured cells upon expression of different oncogenes that deregulate DNA replication. Together with genetic analyses, including a genome-wide assessment of allelic imbalances, our data indicate that early in tumorigenesis (before genomic instability and malignant conversion), human cells activate an ATR/ATM-regulated DNA damage response network that delays or prevents cancer. Mutations compromising this checkpoint, including defects in the ATM–Chk2–p53 pathway, might allow cell proliferation, survival, increased genomic instability and tumour progression.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constitutive activation of the ATM–Chk2–p53 pathway in human urinary bladder cancer.
Figure 2: Chk2 activation precedes p53 mutations and genomic instability in bladder cancer.
Figure 3: Phosphorylation and activation of Chk2 in early breast and colon tumours.
Figure 4: Overexpressed cyclin E, Cdc25A and E2F1 induce a DNA damage response in U-2-OS cells.
Figure 5: DNA damage response to overexpressed oncogenes in U-2-OS cells.
Figure 6: Oncogenes and DNA damage response in early lesions.

Similar content being viewed by others

References

  1. Lowe, S. W., Cepero, E. & Evan, G. I. Intrinsic tumour suppression.Nature432, 307–315 (2004)

    Article ADS CAS  Google Scholar 

  2. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers.Nature396, 643–649 (1998)

    Article ADS CAS  Google Scholar 

  3. Graeber, T. G. et al. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status.Mol. Cell. Biol.14, 6264–6277 (1994)

    Article CAS  Google Scholar 

  4. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity.EMBO J.11, 1921–1929 (1992)

    Article CAS  Google Scholar 

  5. Zindy, F. et al. Arf tumour suppressor promoter monitors latent oncogenic signalsin vivo .Proc. Natl Acad. Sci. USA100, 15930–15935 (2003)

    Article ADS CAS  Google Scholar 

  6. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network.Nature408, 307–310 (2000)

    Article ADS CAS  Google Scholar 

  7. DiTullio, R. A. Jr et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer.Nature Cell Biol.4, 998–1002 (2002)

    Article CAS  Google Scholar 

  8. Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage.Nature Cell Biol.5, 255–260 (2003)

    Article CAS  Google Scholar 

  9. Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer.Nature432, 316–323 (2004)

    Article ADS CAS  Google Scholar 

  10. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity.Nature Rev. Cancer3, 155–168 (2003)

    Article CAS  Google Scholar 

  11. Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability.Mol. Cell9, 1031–1044 (2002)

    Article CAS  Google Scholar 

  12. Lindström, M. S. & Wiman, K. G. Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts.Oncogene22, 4993–5005 (2003)

    Article  Google Scholar 

  13. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation.Nature421, 499–506 (2003)

    Article ADS CAS  Google Scholar 

  14. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139.J. Biol. Chem.273, 5858–5868 (1998)

    Article CAS  Google Scholar 

  15. Lindblad-Toh, K. et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays.Nature Biotechnol.18, 1001–1005 (2000)

    Article CAS  Google Scholar 

  16. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancercous lesions.Nature doi:10.1038/nature03485 (this issue)

  17. Spruck, C. H., Won, K. A. & Reed, S. I. Deregulated cyclin E induces chromosome instability.Nature401, 297–300 (1999)

    Article ADS CAS  Google Scholar 

  18. Minella, A. C. et al. p53 and p21 form an inducible barrier that protects cells against cyclin E-cdk2 deregulation.Curr. Biol.12, 1817–1827 (2002)

    Article CAS  Google Scholar 

  19. Ekholm-Reed, S. et al. Deregulation of cyclin E in human cells interferes with prereplication complex assembly.J. Cell Biol.165, 789–800 (2004)

    Article CAS  Google Scholar 

  20. Reed, S. E. et al. Mutation of hCDC4 leads to cell cycle deregulation of cyclin E in cancer.Cancer Res.64, 795–800 (2004)

    Article CAS  Google Scholar 

  21. Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability.Nature428, 77–81 (2004)

    Article ADS CAS  Google Scholar 

  22. Kim, S. T., Xu, B. & Kastan, M. B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage.Genes Dev.16, 560–570 (2002)

    Article CAS  Google Scholar 

  23. Ward, I. M. & Chen, J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress.J. Biol. Chem.276, 47759–47762 (2001)

    Article CAS  Google Scholar 

  24. Mailand, N. et al. Rapid destruction of human Cdc25A in response to DNA damage.Science288, 1425–1429 (2000)

    Article ADS CAS  Google Scholar 

  25. Cangi, M. G. et al. Role of the Cdc25A phosphatase in human breast cancer.J. Clin. Invest.106, 753–761 (2000)

    Article CAS  Google Scholar 

  26. Müller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis.Genes Dev.15, 267–285 (2001)

    Article  Google Scholar 

  27. Bartek, J., Bartkova, J. & Lukas, J. The retinoblastoma protein pathway in cell cycle control and cancer.Exp. Cell Res.237, 1–6 (1997)

    Article CAS  Google Scholar 

  28. Zhao, H. & Piwnica-Worms, H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1.Mol. Cell. Biol.21, 4129–4139 (2001)

    Article CAS  Google Scholar 

  29. Gatei, M. et al. ATM and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation.J. Biol. Chem.278, 14806–14811 (2003)

    Article CAS  Google Scholar 

  30. Bao, S. et al. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses.Nature411, 969–974 (2001)

    Article ADS CAS  Google Scholar 

  31. Resnitzky, D., Gossen, M., Bujard, H. & Reed, S. I. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system.Mol. Cell. Biol.14, 1669–1679 (1994)

    Article CAS  Google Scholar 

  32. Santoni-Rugiu, E., Falck, J., Mailand, N., Bartek, J. & Lukas, J. Involvement of Myc activity in a G1/S-promoting mechanism parallel to the pRB/E2F pathway.Mol. Cell. Biol.20, 3497–3509 (2000)

    Article CAS  Google Scholar 

  33. Bartek, J., Lukas, C. & Lukas, J. Checking on DNA damage in S phase.Nature Rev. Mol. Cell Biol.5, 792–804 (2004)

    Article CAS  Google Scholar 

  34. Lew, D. J. & Kornbluth, S. Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control.Curr. Opin. Cell Biol.8, 795–804 (1996)

    Article CAS  Google Scholar 

  35. Merrick, C. J., Jackson, D. & Diffley, J. F. X. Visualization of altered replication dynamics after DNA damage in human cells.J. Biol. Chem.279, 20067–20075 (2004)

    Article CAS  Google Scholar 

  36. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes.Science300, 1542–1548 (2003)

    Article ADS CAS  Google Scholar 

  37. Binz, S. K., Sheehan, A. M. & Wold, M. S. Replication protein A phosphorylation and the cellular response to DNA damage.DNA Repair (Amst.)3, 1015–1024 (2004)

    Article CAS  Google Scholar 

  38. Walter, J. & Newport, J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA and DNA polymerase α.Mol. Cell5, 617–627 (2000)

    Article CAS  Google Scholar 

  39. Osborn, A. J., Elledge, S. J. & Zou, L. Checking on the fork: the DNA-replication stress-response pathway.Trends Cell Biol.12, 509–516 (2002)

    Article CAS  Google Scholar 

  40. Tanaka, S. & Diffley, J. F. Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation.Genes Dev.16, 2639–2649 (2002)

    Article CAS  Google Scholar 

  41. Lengronne, A. & Schwob, E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G1.Mol. Cell9, 1067–1078 (2002)

    Article CAS  Google Scholar 

  42. Hart, K. C. et al. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4.Oncogene19, 3309–3320 (2000)

    Article CAS  Google Scholar 

  43. Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR regulates fragile site stability.Cell111, 779–789 (2002)

    Article CAS  Google Scholar 

  44. Rogoff, H. A. et al. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2.Mol. Cell. Biol.24, 2968–2977 (2004)

    Article CAS  Google Scholar 

  45. Lomonosov, M., Anand, S., Sangrithi, M., Davies, R. & Venkitaraman, A. R. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein.Genes Dev.17, 3017–3022 (2003)

    Article CAS  Google Scholar 

  46. Meeker, A. K. et al. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis.Clin. Cancer Res.10, 3317–3326 (2004)

    Article CAS  Google Scholar 

  47. Chin, K. et al.In situ analyses of genome instability in breast cancer.Nature Genet.36, 984–988 (2004)

    Article CAS  Google Scholar 

  48. d'Adda di Fagagna, F. et al. DNA damage checkpoint response in telomere-initiated senescence.Nature426, 194–198 (2003)

    Article ADS CAS  Google Scholar 

  49. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres.Curr. Biol.13, 1549–1556 (2003)

    Article CAS  Google Scholar 

  50. Eddy, S. R. Profile hidden Markov models.Bioinformatics14, 755–763 (1998)

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Shiloh, C. Bakkenist, M. Kastan, M. Welcker, B. Clurman, V. Gorgoulis and K. Helin for reagents; M.H. Lee, D. Lützhoft, A. Arnt Kjerulff and L.-L. Christensen for technical assistance; and C. Wiuf for data analysis. This work was supported by the Danish Cancer Society, the Alfred Benzon Foundation and the European Commission.

Author information

Authors and Affiliations

  1. Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Strandboulevarden 49, DK-2100, Copenhagen, Denmark

    Jirina Bartkova, Zuzana Hořejší, Alwin Krämer, Frederic Tort, Per Guldberg, Claudia Lukas, Jiri Lukas & Jiri Bartek

  2. Department of Clinical Biochemistry, Aarhus University Hospital, Skejby, DK-8200, Aarhus N, Denmark

    Karen Koed, Karsten Zieger & Torben Ørntoft

  3. Department of Pathology, University Hospital, Frederik V's Vej 11, DK-2100, Copenhagen, Denmark

    Maxwell Sehested

  4. Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Ullernchausseen 70, 0310, Oslo, Norway

    Jahn M. Nesland

  5. Institute of Molecular Genetics, Czech Academy of Sciences, Flemingovo nam. 2, Praha, 6, CZ-16637, Czech Republic

    Zuzana Hořejší

Authors
  1. Jirina Bartkova

    You can also search for this author inPubMed Google Scholar

  2. Zuzana Hořejší

    You can also search for this author inPubMed Google Scholar

  3. Karen Koed

    You can also search for this author inPubMed Google Scholar

  4. Alwin Krämer

    You can also search for this author inPubMed Google Scholar

  5. Frederic Tort

    You can also search for this author inPubMed Google Scholar

  6. Karsten Zieger

    You can also search for this author inPubMed Google Scholar

  7. Per Guldberg

    You can also search for this author inPubMed Google Scholar

  8. Maxwell Sehested

    You can also search for this author inPubMed Google Scholar

  9. Jahn M. Nesland

    You can also search for this author inPubMed Google Scholar

  10. Claudia Lukas

    You can also search for this author inPubMed Google Scholar

  11. Torben Ørntoft

    You can also search for this author inPubMed Google Scholar

  12. Jiri Lukas

    You can also search for this author inPubMed Google Scholar

  13. Jiri Bartek

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toJirina Bartkova orJiri Bartek.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure Legends

Legends to accompany the below Supplementary Figures. (DOC 38 kb)

Supplementary Figure S1

Immunostaining of γH2AX in human Ta lesions of the urinary bladder, shown at high magnification by confocal laser microscope or immunoperoxidase staining to document the focal pattern of γH2AX in tumour cell nuclei. (PDF 513 kb)

Supplementary Figure S2

Summary data for Ser1981-phosphorylated ATM, Thr68-phosphorylated Chk2, and classification of bladder tumours according to their genomic instability deduced from the SNP array analysis of allelic imbalances. (JPG 727 kb)

Supplementary Figure S3

Examples of immunohistochemistry images to illustrate that mononuclear cell infiltrate is insufficient to activate the DNA damage response in human colon tissues. (JPG 663 kb)

Supplementary Figure S4

Cytological detection (confocal laser microscope and light microscope images) of activated DNA damage checkpoint markers in U-2-OS cells exposed to various hyperproliferative, oncogenic stimuli. (PDF 547 kb)

Supplementary Figure S5

Examples of immunoperoxidase and immunofluorescence images of cyclin E-activated DNA damage checkpoint markers in normal human fibroblasts. (PDF 920 kb)

Supplementary Figure S6

Evidence for altered dynamics of DNA replication and chromatin association of the RPA protein) on induced overexpression of cyclin E in human U-2-OS cells. (JPG 331 kb)

Supplementary Figure S7

Immunohsitochemical evidence for aberrantly enhanced cyclin E and γH2AX in colon adenomas and summary to document the correlation of γ-H2AX and elevated cyclin E. (JPG 358 kb)

Supplementary Figure S8

Examples of immunohistochemical patterns of Tyr15-phosphorylated Cdk1, Ki67 and γH2AX in colon adenomas, and summary of frequencies and correlation between the γH2AX and pTyr-Cdk1 markers in adenomas and carcinomas, respectively. (JPG 492 kb)

Supplementary Data

Data from the SNP array analysis of DNA isolated from the blood and microdissected lesions from samples of different stages of human bladder tumourigenesis, MIAME compliant. (DOC 70 kb)

Rights and permissions

About this article

Cite this article

Bartkova, J., Hořejší, Z., Koed, K.et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis.Nature434, 864–870 (2005). https://doi.org/10.1038/nature03482

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

Cancer checkpoint

Two groups this week report findings that could have a big impact on our view of cancer development. Both looked at tumours (bladder, breast and colorectal, and in lung and skin) in various stages of progression for signs of a DNA damage response. And both find that early stages of cancer development are associated with an active DNA damage response and p53-dependent cell death. This suggests that the induction of a DNA damage response by oncogenic events is a potent tumour suppression mechanism, and explains the selective pressure for p53 mutations in precancerous lesions. Importantly, activation of the DNA damage checkpoint occurs before chromosome instability and malignancy. On the cover, 53BP1 foci in lung hyperplasia (green indicates DNA damage checkpoint activation).

Associated content

Aborting the birth of cancer

  • Ashok R. Venkitaraman
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp