Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey

Naturevolume 430pages174–180 (2004)Cite this article

Abstract

Although jawless vertebrates are apparently capable of adaptive immune responses, they have not been found to possess the recombinatorial antigen receptors shared by all jawed vertebrates. Our search for the phylogenetic roots of adaptive immunity in the lamprey has instead identified a new type of variable lymphocyte receptors (VLRs) composed of highly diverse leucine-rich repeats (LRR) sandwiched between amino- and carboxy-terminal LRRs. An invariant stalk region tethers the VLRs to the cell surface by means of a glycosyl-phosphatidyl-inositol anchor. To generate rearranged VLR genes of the diversity necessary for an anticipatory immune system, the single lampreyVLR locus contains a large bank of diverse LRR cassettes, available for insertion into an incomplete germline VLR gene. Individual lymphocytes express a uniquely rearranged VLR gene in monoallelic fashion. Different evolutionary strategies were thus used to generate highly diverse lymphocyte receptors through rearrangement of LRR modules in agnathans (jawless fish) and of immunoglobulin gene segments in gnathostomes (jawed vertebrates).

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lamprey leukocytes and VLRs.
Figure 2: Diversity of VLRs from two lampreys.
Figure 3: Graphic representation of protein divergence among 112 VLR diversity regions PCR amplified from 13 individual lampreys.
Figure 4: Sea lamprey genome harbours a singleVLR locus.
Figure 5: TheVLR locus.

Similar content being viewed by others

References

  1. Litman, G. W., Anderson, M. K. & Rast, J. P. Evolution of antigen binding receptors.Annu. Rev. Immunol.17, 109–147 (1999)

    Article CAS  Google Scholar 

  2. Flajnik, M. F. & Kasahara, M. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system.Immunity15, 351–362 (2001)

    Article CAS  Google Scholar 

  3. Flajnik, M. F. Comparative analyses of immunoglobulin genes: surprises and portents.Nature Rev. Immunol.2, 688–698 (2002)

    Article CAS  Google Scholar 

  4. Forey, P. L. & Janvier, P. Agnathans and the origin of jawed vertebrates.Nature361, 129–134 (1993)

    Article ADS  Google Scholar 

  5. Finstad, J. & Good, R. A. The evolution of the immune response. III. Immunologic responses in the lamprey.J. Exp. Med.120, 1151–1167 (1964)

    Article CAS  Google Scholar 

  6. Marchalonis, J. J. & Edelman, G. M. Phylogenetic origins of antibody structure. 3. Antibodies in the primary immune response of the sea lamprey,Petromyzon marinus.J. Exp. Med.127, 891–914 (1968)

    Article CAS  Google Scholar 

  7. Litman, G. W. et al. The evolution of the immune response. VIII. Structural studies of the lamprey immunoglobulin.J. Immunol.105, 1278–1285 (1970)

    CAS PubMed  Google Scholar 

  8. Pollara, B., Litman, G. W., Finstad, J., Howell, J. & Good, R. A. The evolution of the immune response. VII. Antibody to human “O” cells and properties of the immunoglobulin in lamprey.J. Immunol.105, 738–745 (1970)

    CAS PubMed  Google Scholar 

  9. Good, R. A., Finstad, J. & Litman, G. W. inThe Biology of lampreys II: Immunology (eds Hardisty, M. V. & Potter, I. C.) 405–432 (Academic, London, 1972)

    Google Scholar 

  10. Hagen, M., Filosa, M. F. & Youson, J. H. The immune response in adult sea lamprey (Petromyzon marinus L.): the effect of temperature.Comp. Biochem. Physiol.82, 207–210 (1985)

    Article CAS  Google Scholar 

  11. Perey, D. Y., Finstad, J., Pollara, B. & Good, R. A. Evolution of the immune response. VI. First and second set skin homograft rejections in primitive fishes.Lab. Invest.19, 591–597 (1968)

    CAS PubMed  Google Scholar 

  12. Cooper, A. J. inAmmocoete Lymphoid Cell Populations In vitro. 4th Leukocyte Culture Conference (ed. McIntyre, O. R.) 137–147 (Appleton Century-Crofts, New York, 1971)

    Google Scholar 

  13. Piavis, G. W. & Hiatt, J. L. Blood cell lineage in the sea lampreyPetromyzon marinus (Pisces: Petromyzontidae).Copeia4, 722–728 (1971)

    Article  Google Scholar 

  14. Fujii, T. Electron microscopy of the leukocytes of the typhlosole in ammocoetes, with special attention to the antibody-producing cells.J. Morphol.173, 87–100 (1982)

    Article CAS  Google Scholar 

  15. Ardavin, C. F. & Zapata, A. Ultrastructure and changes during metamorphosis of the lympho-hemopoietic tissue of the larval anadromous sea lampreyPetromyzon marinus.Dev. Comp. Immunol.11, 79–93 (1987)

    Article CAS  Google Scholar 

  16. Mayer, W. E. et al. Isolation and characterization of lymphocyte-like cells from a lamprey.Proc. Natl Acad. Sci. USA99, 14350–14355 (2002)

    Article ADS CAS  Google Scholar 

  17. Mayer, W. E., O'Huigin, C., Tichy, H., Terzic, J. & Saraga-Babic, M. Identification of two Ikaros-like transcription factors in lamprey.Scand. J. Immunol.55, 162–170 (2002)

    Article CAS  Google Scholar 

  18. Haire, R. N., Miracle, A. L., Rast, J. P. & Litman, G. W. Members of the Ikaros gene family are present in early representative vertebrates.J. Immunol.165, 306–312 (2000)

    Article CAS  Google Scholar 

  19. Shintani, S. et al. Do lampreys have lymphocytes? The Spi evidence.Proc. Natl Acad. Sci. USA97, 7417–7422 (2000)

    Article ADS CAS  Google Scholar 

  20. Anderson, M. K., Sun, X., Miracle, A. L., Litman, G. W. & Rothenberg, E. V. Evolution of hematopoiesis: three members of the PU.1 transcription factor family in a cartilaginous fish,Raja eglanteria.Proc. Natl Acad. Sci. USA98, 553–558 (2001)

    Article ADS CAS  Google Scholar 

  21. Azumi, K. et al. Genomic analysis of immunity in a urochordate and the emergence of the vertebrate immune system: “waiting for Godot”.Immunogenetics55, 570–581 (2003)

    Article CAS  Google Scholar 

  22. Uinuk-Ool, T. S. et al. Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes.Proc. Natl Acad. Sci. USA99, 14356–14361 (2002)

    Article ADS CAS  Google Scholar 

  23. Uinuk-Ool, T. S. et al. Identification and characterization of a TAP-family gene in the lamprey.Immunogenetics55, 38–48 (2003)

    CAS PubMed  Google Scholar 

  24. Schwede, T., Diemand, A., Guex, N. & Peitsch, M. V. Protein structure computing in the genomic era.Res. Microbiol.151, 107–112 (2000)

    Article CAS  Google Scholar 

  25. Bell, J. K. et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors.Trends Immunol.24, 528–533 (2003)

    Article CAS  Google Scholar 

  26. Bryan, M. B., Libants, S. V., Warrillow, J. A., Li, W. & Scribner, K. T. Polymorphic microsatellite markers for the landlocked sea lamprey,Petromyzon marinus.Conserv. Genet.4, 113–116 (2003)

    Article CAS  Google Scholar 

  27. Beutler, B. Innate immunity: an overview.Mol. Immunol.40, 845–859 (2004)

    Article CAS  Google Scholar 

  28. Landmann, R., Müller, B. & Zimmerli, W. CD14, new aspects of ligand and signal diversity.Microbes Infect.2, 295–304 (2000)

    Article CAS  Google Scholar 

  29. Chamaillard, M., Girardin, S. E., Viala, J. & Philpott, D. J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation.Cell. Microbiol.5, 581–592 (2003)

    Article CAS  Google Scholar 

  30. Jones, D. A. & Takemoto, D. Plant innate immunity—direct and indirect recognition of general and specific pathogen-associated molecules.Curr. Opin. Immunol.16, 48–62 (2004)

    Article CAS  Google Scholar 

  31. Ikezawa, H. Glycosylphosphatidylinositol (GPI)-anchored proteins.Biol. Pharm. Bull.25, 409–417 (2002)

    Article CAS  Google Scholar 

  32. Kaufman, J. The origins of the adaptive immune system: whatever next?Nature Immunol.3, 1124–1125 (2002)

    Article CAS  Google Scholar 

  33. Thompson, C. B. & Nieman, P. E. Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment.Cell48, 369–378 (1987)

    Article CAS  Google Scholar 

  34. Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. A hyper conversion mechanism generates the chicken light chain preimmune repertoire.Cell48, 379–388 (1987)

    Article CAS  Google Scholar 

  35. Hamrick, T. S., Dempsey, J. A., Cohen, M. S. & Cannon, J. G. Antigenic variation of gonococcal pilin expressionin vivo: analysis of the strain FA1090 pilin repertoire and identification of thepilS gene copies recombining withpilE during experimental human infection.Microbiol.147, 839–849 (2001)

    Article CAS  Google Scholar 

  36. Wang, D., Botkin, D. J. & Norris, S. J. Characterization of thevls antigenic variation loci of the Lyme disease spirochaetesBorrelia garinii Ip90 andBorrelia afzelii ACAI.Mol. Microbiol.47, 1407–1417 (2003)

    Article CAS  Google Scholar 

  37. Berriman, M. et al. The architecture of variant surface glycoprotein gene expression sites inTrypanosoma brucei.Mol. Biochem. Parasitol.122, 131–140 (2002)

    Article CAS  Google Scholar 

  38. Duffy, M. F., Reeder, J. C. & Brown, G. V. Regulation of antigenic variation inPlasmodium falciparum: censoring freedom of expression?Trends Parasitol.19, 121–124 (2003)

    Article CAS  Google Scholar 

  39. Nash, T. E. Surface antigenic variation inGiardia lamblia.Mol. Microbiol.45, 585–590 (2002)

    Article CAS  Google Scholar 

  40. Schluter, S. F., Bernstein, R. M., Bernstein, H. & Marchalonis, J. J. ‘Big Bang’ emergence of the combinatorial immune system.Dev. Comp. Immunol.23, 107–111 (1999)

    Article CAS  Google Scholar 

  41. Amemiya, C. T., Ota, T. & Litman, G. W. inNonmammalian Genomic Analysis: A Practical Guide. Construction of P1 Artificial Chromosome (PAC) Libraries from Lower Vertebrates (eds Birren, B. & Lai, E.) 223–256 (Academic, New York, 1996)

    Book  Google Scholar 

  42. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. MEGA2: molecular evolutionary genetics analysis software.Bioinformatics17, 1244–1245 (2001)

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Bergstedt and W. Swink of the Hammond Bay Biological Station for assistance with lamprey biology and supply; G. Hines and the UAB Animal Resources Program staff for attending the lampreys; Y. Kubagawa for VLR sequencing; P. Burrows, H. Schroeder and E. Sorscher for discussion; and A. Brookshire for manuscript preparation. The work was supported by grants from the National Institutes of Health and the National Science Foundation. M.D.C. is an Investigator of the Howard Hughes Medical Institute and Z.P. was a recipient of the Cottrell postdoctoral award.

Author information

Authors and Affiliations

  1. Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA

    Zeev Pancer, Götz R. A. Ehrhardt, G. Larry Gartland & Max D. Cooper

  2. Departments of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA

    Zeev Pancer & Max D. Cooper

  3. Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA

    Max D. Cooper

  4. Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA

    G. Larry Gartland & Max D. Cooper

  5. Howard Hughes Medical Institute, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA

    Götz R. A. Ehrhardt & Max D. Cooper

  6. Molecular Genetics Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, 98101, USA

    Chris T. Amemiya

  7. University of Michigan, Ann Arbor, Michigan, 48109, USA

    Jill Ceitlin

Authors
  1. Zeev Pancer
  2. Chris T. Amemiya
  3. Götz R. A. Ehrhardt
  4. Jill Ceitlin
  5. G. Larry Gartland
  6. Max D. Cooper

Corresponding author

Correspondence toMax D. Cooper.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Multiple alignment of 22 predicted VLR proteins from EST clones. (DOC 3785 kb)

Supplementary Figure 2

ORF of a representative VLR. Nucleotide and predicted amino-acid sequence from clone LyEST2913, with indication of LRR structural motifs and their correspondence to exons 2-4 in thegermline VLR, and the position of the stalk domain and GPI cleavage site. (DOC 2209 kb)

Supplementary Figure 3

Multiple alignment of 112 VLR diversity regions PCR amplified from 13 lampreys. Genomic and RT–PCR clones from immunostimulated and unstimulated lampreys, including sorted single lymphocytes. Consists of top and bottom halves. (DOC 3991 kb)

Supplementary Table 1

PCR primers used in this study. Sequence and position of primers are provided for cDNA clone LyEST2913 (AY578059) and for the genomicVLR contig (AY577941). (DOC 25 kb)

Rights and permissions

About this article

Cite this article

Pancer, Z., Amemiya, C., Ehrhardt, G.et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey.Nature430, 174–180 (2004). https://doi.org/10.1038/nature02740

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Another manifestation of GOD

  • Martin F. Flajnik
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp