- Letter
- Published:
A primitive Y chromosome in papaya marks incipient sex chromosome evolution
- Zhiyong Liu1,
- Paul H. Moore2,
- Hao Ma1,3,
- Christine M. Ackerman1,
- Makandar Ragiba1,
- Qingyi Yu1,3,
- Heather M. Pearl1,
- Minna S. Kim1,
- Joseph W. Charlton1,
- John I. Stiles4,
- Francis T. Zee2,
- Andrew H. Paterson5 &
- …
- Ray Ming1
Naturevolume 427, pages348–352 (2004)Cite this article
2918Accesses
344Citations
5Altmetric
Abstract
Many diverse systems for sex determination have evolved in plants and animals1,2,3. One involves physically distinct (heteromorphic) sex chromosomes (X and Y, or Z and W) that are homozygous in one sex (usually female) and heterozygous in the other (usually male). Sex chromosome evolution is thought to involve suppression of recombination around the sex determination genes, rendering permanently heterozygous a chromosomal region that may then accumulate deleterious recessive mutations by Muller's ratchet, and fix deleterious mutations by hitchhiking as nearby favourable mutations are selected on the Y chromosome4,5. Over time, these processes may cause the Y chromosome to degenerate and to diverge from the X chromosome over much of its length; for example, only 5% of the human Y chromosome still shows X–Y recombination6. Here we show that papaya contains a primitive Y chromosome, with a male-specific region that accounts for only about 10% of the chromosome but has undergone severe recombination suppression and DNA sequence degeneration. This finding provides direct evidence for the origin of sex chromosomes from autosomes.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Westergaard, M. The mechanism of sex determination in flowering plants.Adv. Genet.9, 217–281 (1958)
White, M. J. D. inInsect Reproduction (eds Leather, S. R. & Hardie, J.) 57–94 (Cambridge Univ. Press, Cambridge, 1973)
Ohno, S.Sex Chromosome and Sex-linked Genes (Springer, Berlin, 1967)
Muller, M. The relation of recombination to mutational advance.Mutat. Res.1, 2–9 (1964)
Rice, W. R. Genetic hitch-hiking and the evolution of reduced genetic activity of the Y sex chromosome.Genetics116, 161–167 (1987)
Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes.Nature423, 825–837 (2003)
Hofmeyr, J. D. J. Genetical studies ofCarica papaya L.S. Afr. Dept Agric. Sci. Bull.187, 64 (1938)
Storey, W. B. Segregation of sex types inSolo papaya and their application to the selection of seed.Am. Soc. Horticult. Sci. Proc.35, 83–85 (1938)
Hofmeyr, J. D. J. Some genetic and breeding aspects ofCarica papaya.Agronomia Tropical17, 345–351 (1967)
Storey, W. B. inThe Evolution of Crop Plants (ed. Simmonds, N. W.) 21–24 (Longman, London, 1976)
Horovitz, S. & Jiminez, H. Cruzamientos interespecificos e intergenericos en Caricaceaes y sus implicationes fitotecnias.Agronomia Tropical17, 353–359 (1967)
Sondur, S. N., Manshardt, R. M. & Stiles, J. I. A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers.Theor. Appl. Genet.93, 547–553 (1996)
Ma, H. et al. High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya.Genetics (in the press)
Deputy, J. C. et al. Molecular marker for sex determination in papaya (Carica papaya L.).Theor. Appl. Genet.106, 107–111 (2002)
Ming, R. et al. Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome.Theor. Appl. Genet.102, 892–899 (2001)
Storey, W. B. The botany and sex relations of the papaya.Hawaii Agricult. Exp. Station Bull87, 5–22 (1941)
Tanksley, S. D., Miller, J. C., Paterson, A. H. & Bernatzky, R.Proc. 18th Stadler Genet. Symp. 157–173 (Plenum, New York, 1988)
Charlesworth, B. The evolution of sex chromosomes.Science251, 1030–1033 (1991)
Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome.Science286, 964–967 (1999)
Iwase, M. et al. Theamelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species.Proc. Natl Acad. Sci. USA100, 5258–5263 (2003)
Charlesworth, D. Plant sex determination and sex chromosomes.Heredity88, 94–101 (2002)
Filatov, D. A., Moneger, F., Negrutiu, I. & Charlesworth, D. Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution.Nature404, 388–390 (2000)
Chiu, C. T.Study on Sex Inheritance and Horticultural Characteristics of Hermaphrodite Papaya Thesis, Nat. Pingtung Univ. Sci. Technol., Taiwan (2000)
Storey, W. B. Genetics of the papaya.J. Hered.44, 70–78 (1953)
Okada, S. et al. The Y chromosome in the liverwortMarchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene.Proc. Natl Acad. Sci. USA98, 9454–9459 (2001)
Bachtrog, D. Adaptation shapes patterns of genome evolution on sexual and asexual chromosomes inDrosophila.Nature Genet.34, 215–219 (2003)
Charlesworth, B. & Charlesworth, D. A model for the evolution of dioecy and gynodioecy.Am. Nat.112, 975–997 (1978)
Yang, Z. N. & Mirkov, T. E. Isolation of large terminal sequences of BAC inserts based on double restriction enzyme digestion followed by anchored PCR.Genome43, 412–415 (2000)
Siroky, J., Lysak, M. A., Dolezel, J., Kejnovsky, E. & Vyskot, B. Heterogeneity of rDNA distribution and genome size inSilene spp.Chromosome Res.9, 387–393 (2001)
Lengerova, M., Moore, R. C., Grant, S. R. & Vyskot, B. The sex chromosomes ofSilene latifolia revisited and revised.Genetics165, 935–938 (2003)
Acknowledgements
We thank D. Charlesworth for comments on the manuscript; R. Perl-Treves for discussions; S. Ancheta, G. Asmus and L. Poland for technical assistance; R. Manshardt for providing an F2 population for fine-mapping; and H. Albert, M. Moore, R. Osgood, B. Vyskot and S. Whalen for reviewing the manuscript. This work was supported by a United States Department of Agriculture Agricultural Research Service (USDA-ARS) Cooperative Agreement with the Hawaii Agriculture Research Center, and a subaward to R. M. and A.H.P. to produce and to characterize the BAC library.
Author information
Authors and Affiliations
Hawaii Agriculture Research Center, Aiea, Hawaii, 96701, USA
Zhiyong Liu, Hao Ma, Christine M. Ackerman, Makandar Ragiba, Qingyi Yu, Heather M. Pearl, Minna S. Kim, Joseph W. Charlton & Ray Ming
USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, Hawaii, 96720, USA
Paul H. Moore & Francis T. Zee
Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii, 96822, USA
Hao Ma & Qingyi Yu
Integrated Coffee Technologies Incorporated, Waialua, Hawaii, 96791, USA
John I. Stiles
Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, 30602, USA
Andrew H. Paterson
- Zhiyong Liu
Search author on:PubMed Google Scholar
- Paul H. Moore
Search author on:PubMed Google Scholar
- Hao Ma
Search author on:PubMed Google Scholar
- Christine M. Ackerman
Search author on:PubMed Google Scholar
- Makandar Ragiba
Search author on:PubMed Google Scholar
- Qingyi Yu
Search author on:PubMed Google Scholar
- Heather M. Pearl
Search author on:PubMed Google Scholar
- Minna S. Kim
Search author on:PubMed Google Scholar
- Joseph W. Charlton
Search author on:PubMed Google Scholar
- John I. Stiles
Search author on:PubMed Google Scholar
- Francis T. Zee
Search author on:PubMed Google Scholar
- Andrew H. Paterson
Search author on:PubMed Google Scholar
- Ray Ming
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toRay Ming.
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
41586_2004_BFnature02228_MOESM2_ESM.doc
Supplementary Figure 2: PCR amplification of duplicated cpsm90 and cpsm31 on BACs mapped to the tandem duplication region in the papaya MSY. (DOC 39 kb)
41586_2004_BFnature02228_MOESM3_ESM.doc
Supplementary Figure 3: Precocious separation of one pair of papaya chromosomes at anaphase I in pollen mother cells. (DOC 683 kb)
41586_2004_BFnature02228_MOESM4_ESM.doc
Supplementary Table: Comparison of male-specific DNA sequences amplified from papaya hermaphrodite and male genomic DNA. (DOC 24 kb)
Rights and permissions
About this article
Cite this article
Liu, Z., Moore, P., Ma, H.et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution.Nature427, 348–352 (2004). https://doi.org/10.1038/nature02228
Received:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Evolution of a plant sex chromosome driven by expanding pericentromeric recombination suppression
- Dmitry A. Filatov
Scientific Reports (2024)
Gene regulation network analyses of pistil development in papaya
- Zhenyang Liao
- Fei Dong
- Ray Ming
BMC Genomics (2022)
Reinvention of hermaphroditism via activation of a RADIALIS-like gene in hexaploid persimmon
- Kanae Masuda
- Yoko Ikeda
- Takashi Akagi
Nature Plants (2022)
Carica papaya: comprehensive overview of the nutritional values, phytochemicals and pharmacological activities
- Oluwaseun Ruth Alara
- Nour Hamid Abdurahman
- John Adewole Alara
Advances in Traditional Medicine (2022)
Characterization and analysis of the promoter region of monodehydroascorbate reductase 4 (CpMDAR4) in papaya
- Dessireé Zerpa-Catanho
- Steven J. Clough
- Ray Ming
Plant Reproduction (2022)


