- Review Article
- Published:
Osteoclast differentiation and activation
Naturevolume 423, pages337–342 (2003)Cite this article
56kAccesses
5131Citations
34Altmetric
Abstract
Osteoclasts are specialized cells derived from the monocyte/macrophage haematopoietic lineage that develop and adhere to bone matrix, then secrete acid and lytic enzymes that degrade it in a specialized, extracellular compartment. Discovery of the RANK signalling pathway in the osteoclast has provided insight into the mechanisms of osteoclastogenesis and activation of bone resorption, and how hormonal signals impact bone structure and mass. Further study of this pathway is providing the molecular basis for developing therapeutics to treat osteoporosis and other diseases of bone loss.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Chambers, T. J. Regulation of the differentiation and function of osteoclasts.J. Pathol.192, 4–13 (2000).
Teitlelbaum, S. L. Bone resorption by osteoclasts.Science289, 1504–1508 (2000).
Rodan, G. A. & Martin, T. J. Therapeutic approaches to bone diseases.Science289, 1508–1514 (2000).
Khosla, S. Minireview: the OPG/RANKL/RANK system.Endocrinology142, 5050–5055 (2001).
Takahashi, N. et al. Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures.Endocrinology122, 1373–1382 (1988).
Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL.Proc. Natl Acad. Sci. USA95, 3597–3602 (1998).
Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation.Cell93, 165–176 (1998).
Nakagawa, N. et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis.Biochem. Biophys. Res. Commun.253, 395–400 (1998).
Hsu, H. et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand.Proc. Natl Acad. Sci. USA96, 3540–3545 (1999).
Burgess, T. L. et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts.J. Cell Biol.145, 527–538 (1999).
Li, Y. P., Chen, W., Liang, Y., Li, E. & Stashenko, P.Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification.Nature Genet.23, 447–451 (1999).
Fuller, K., Murphy, C., Kirstein, B., Fox, S.W. & Chambers, T. J. TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL.Endocrinology143, 1108–1118 (2002).
Rodan, G. A. Bone homeostasis.Proc. Natl Acad. Sci. USA95, 13361–13362 (1998).
Jimi, E. et al. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function.J. Immunol.163, 434–442 (1999).
Lacey, D. L. et al. Osteoprotegerin ligand modulates murine osteoclast survivalin vitro andin vivo.Am. J. Pathol.157, 435–448 (2000).
Marks, S. C. Jr Osteoclast biology: lessons from mammalian mutations.Am. J. Med. Genet.34, 43–53 (1989).
McLean, W. & Olsen, B. R. Mouse models of abnormal skeletal development and homeostasis.Trends Genet.17, S38–S43 (2001).
Van Wesenbeeck, L. et al. The osteopetrotic mutationtoothless (tl) is a loss-of-function frameshift mutation in the ratCsf1 gene: evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification.Proc. Natl Acad. Sci. USA99, 14303–14308 (2002).
Takeshita, S. et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts.Nature Med.9, 943–949 (2002).
Bucay, N. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification.Genes Dev.12, 1260–1268 (1998).
Wagner, E. F. & Karsenty, G. Genetic control of skeletal development.Curr. Opin. Genet. Dev.5, 527–532 (2001).
Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density.Cell89, 309–319 (1997).
Yasuda, H. et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesisin vitro.Endocrinology139, 1329–1337 (1998).
Morony, S. et al. A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-1β, TNF-α, PTH, PTHrP, and 1,25(OH)2D3 .J. Bone Miner. Res.14, 1478–1485 (1999).
Wong, B. R. et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-jun N-terminal kinase in T cells.J. Biol. Chem.272, 25190 (1997).
Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function.Nature390, 175–179 (1997).
Li, J. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism.Proc. Natl Acad. Sci. USA97, 1566–1571 (2000).
Dougall, W. C. et al. RANK is essential for osteoclast and lymph node development.Genes Dev.13, 2412–2424 (1999).
Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis.Nature397, 315–323 (1999).
Hofbauer, L. C. et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption.J. Bone Miner. Res.15, 2–12 (2000).
Theill, L. E., Boyle, W. J. & Penninger, J. M. RANK-L and RANK: T cells, bone loss, and mammalian evolution.Annu. Rev. Immunol.20, 795–823 (2002).
Udagawa, N. et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function.Endocrinology141, 3478–3484 (2000).
Schoppet, M., Preissner, K. T. & Hofbauer, L. C. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function.Arterioscler. Thromb. Vasc. Biol.22, 549–553 (2002).
Darnay, B. G., Haridas, V., Ni, J., Moore, P. A. & Aggarwal, B. B. Characterization of the intracellular domain of receptor activator of NF-κB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-κB and c-Jun N-terminal kinase.J. Biol. Chem.273, 20551–20555 (1998).
Galibert, L., Tometsko, M. E., Anderson, D. M., Cosman, D. & Dougall, W. C. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-κB, a member of the TNFR superfamily.J. Biol. Chem.273, 34120–34127 (1998).
Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling.Genes Dev.13, 1015–1024 (1999).
Kobayashi, N. et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis.EMBO J.20, 1271–1280 (2001).
Armstrong, A. P. et al. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function.J. Biol. Chem.277, 44347–44356 (2002).
Ye, H. et al. Distinct molecular mechanism for initiating TRAF6 signalling.Nature418, 443–447 (2002).
Franzoso, G. et al. Requirement for NF-κB in osteoclast and B-cell development.Genes Dev.11, 3482–3496 (1997).
Xing, L. et al. NF-κB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis.J. Bone Miner. Res.17, 1200–1210 (2002).
Grigoriadis, A. E. et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling.Science266, 443–448 (1994).
Karin, M., Cao, Y., Greten, F. R. & Li, Z.-W. NF-κB in cancer: from an innocent bystander to major culprit.Nature Rev. Cancer2, 301–310 (2002).
David, J. P., Sabapathy, K., Hoffmann, O., Idarraga, M. H. & Wagner, E. F. JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms.J. Cell Sci.115, 4317–4325 (2002).
Lee, S. W., Han, S. I., Kim, H. H. & Lee, Z. H. TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-κB.J. Biochem. Mol. Biol.35, 371–376 (2002).
Mizukami, J. et al. Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6.Mol. Cell. Biol.22, 992–1000 (2002).
Oda, H., Nakamura, K. & Tanaka, S. Possible involvement of IκB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor κB ligand.J. Bone Miner. Res.17, 612–621 (2002).
Li, X. et al. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function.Endocrinology143, 3105–3113 (2002).
Matsumoto, M., Sudo, T., Saito, T., Osada, H. & Tsujimoto, M. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-κB ligand (RANKL).J. Biol. Chem.275, 31155–31161 (2000).
Mansky, K. C., Sankar, U., Han, J. & Ostrowski, M. C. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-κB ligand signaling.J. Biol. Chem.277, 11077–11083 (2002).
Wei, S., Wang, M. W., Teitelbaum, S. L. & Ross, F. P. Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-κB and mitogen-activated protein kinase signaling.J. Biol. Chem.277, 6622–6630 (2002).
Hotokezaka, H. et al. U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells.J. Biol. Chem.277, 47366–47372 (2002).
Wong, B. R. et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src.Mol. Cell4, 1041–1049 (1999).
Shui, C., Riggs, B. L. & Khosla, S. The immunosuppressant rapamycin, alone or with transforming growth factor-β, enhances osteoclast differentiation of RAW264.7 monocyte-macrophage cells in the presence of RANK-ligand.Calcif. Tissue Int.71, 437–446 (2002).
Cappellen, D. et al. Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFκB.J. Biol. Chem.277, 21971–21982 (2002).
Ishida, N. et al. Large scale gene expression analysis of osteoclastogenesisin vitro and elucidation of NFAT2 as a key regulator.J. Biol. Chem.277, 41147–41156 (2002).
Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts.Dev. Cell3, 889–901 (2002).
Battaglino, R. et al. c-myc is required for osteoclast differentiation.J. Bone Miner. Res.17, 763–773 (2002).
Mak, T. W. & Yeh, W. C. A block at the toll gate.Nature418, 835–836 (2002).
Arai, F. et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κB (RANK) receptors.J. Exp. Med.190, 1741–1754 (1999).
Yan, T., Riggs, B. L., Boyle, W. J. & Khosla, S. Regulation of osteoclastogenesis and RANK expression by TGF-β1.J. Cell. Biochem.83, 320–325 (2001).
Ma, Y. L. et al. Catabolic effects of continuous human PTH (1–38)in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation.Endocrinology142, 4047–4054 (2001).
Takayanagi, H. et al. RANKL maintains bone homeostasis through c-Fos-dependent induction ofinterferon-β.Nature416, 744–749 (2002).
Hayashi, T., Kaneda, T., Toyama, Y., Kumegawa, M. & Hakeda, Y. Regulation of receptor activator of NF-κB ligand-induced osteoclastogenesis by endogenous interferon-β (INF-β) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs in IFN-β-inhibited osteoclast formation.J. Biol. Chem.277, 27880–27886 (2002).
Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ.Nature408, 600–605 (2000).
Kong, Y. Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand.Nature402, 304–309 (1999).
Chagraoui, H. et al. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO.Blood (in the press).
Hughes, A. E. et al. Mutations inTNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis.Nature Genet.24, 45–48 (2000).
Whyte, M. P. & Hughes, A. E. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication inTNFRSF11A encoding RANK and is allelic to familial expansile osteolysis.J. Bone Miner. Res.17, 26–29 (2002).
Whyte, M. P. et al. Osteoprotegerin deficiency and juvenile Paget's disease.N. Engl. J. Med.347, 175–184 (2002).
Cundy, T. et al. A mutation in the geneTNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype.Hum. Mol. Genet.11, 2119–2127 (2002).
Langdahl, B. L., Carstens, M., Stenkjaer, L. & Eriksen, E. F. Polymorphisms in the osteoprotegerin gene are associated with osteoporotic fractures.J. Bone Miner. Res.17, 1245–1255 (2002).
Bekker, P. J. et al. The effect of a single dose of osteoprotegerin in postmenopausal women.J. Bone Miner. Res.16, 348–360 (2001).
Body, J. J. et al. A Phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases.Cancer97(Suppl.), 887–892 (2003).
Eghbali-Fatourechi, G. et al. Role of RANK ligand in mediating the increased bone resorption in early postmenopausal women.J. Clin. Invest.111, 1221–1230 (2003).
Kim, Y. H., Kim, G. S. & Jeong-Hwa, B. Inhibitory action of bisphosphonates on bone resorption does not involve the regulation of RANKL and OPG expression.Exp. Mol. Med.34, 145–151 (2002).
Mizuno, A. et al. Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis.J. Bone Miner. Metab.20, 337–344 (2002).
Author information
Authors and Affiliations
Protein Pathways, Inc., Woodland Hills, 91367, California, USA
William J. Boyle
Amgen, Inc., Thousand Oaks, 91320, California, USA
W. Scott Simonet & David L. Lacey
- William J. Boyle
You can also search for this author inPubMed Google Scholar
- W. Scott Simonet
You can also search for this author inPubMed Google Scholar
- David L. Lacey
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toWilliam J. Boyle.
Rights and permissions
About this article
Cite this article
Boyle, W., Simonet, W. & Lacey, D. Osteoclast differentiation and activation.Nature423, 337–342 (2003). https://doi.org/10.1038/nature01658
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
A novel method to efficiently differentiate human osteoclasts from blood-derived monocytes
- Suganja Chandrabalan
- Linh Dang
- Kerstin Menck
Biological Procedures Online (2024)
Physiological occlusal force attenuates replacement root resorption of replanted teeth: an experimental animal study
- Zhenjiang Ding
- Anqi Wang
- Xu Chen
BMC Oral Health (2024)
Oxyresveratrol attenuates bone resorption by inhibiting the mitogen-activated protein kinase pathway in ovariectomized rats
- Yea-Jin Lee
- Jin-Chul Ahn
- Chung-Hun Oh
Nutrition & Metabolism (2024)
M2 macrophages-derived exosomes regulate osteoclast differentiation by the CSF2/TNF-α axis
- Yue Zhou
- Guangyao Hu
BMC Oral Health (2024)
GBA1 as a risk gene for osteoporosis in the specific populations and its role in the development of Gaucher disease
- Chung-Hsing Wang
- Yu‐Nan Huang
- Fuu-Jen Tsai
Orphanet Journal of Rare Diseases (2024)