Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Chemical investigation of hassium (element 108)

Naturevolume 418pages859–862 (2002)Cite this article

Abstract

The periodic table provides a classification of the chemical properties of the elements. But for the heaviest elements, the transactinides, this role of the periodic table reaches its limits because increasingly strong relativistic effects on the valence electron shells can induce deviations from known trends in chemical properties1,2,3,4. In the case of the first two transactinides, elements 104 and 105, relativistic effects do indeed influence their chemical properties5, whereas elements 106 and 107 both behave as expected from their position within the periodic table6,7. Here we report the chemical separation and characterization of only seven detected atoms of element 108 (hassium, Hs), which were generated as isotopes269Hs (refs8,9) and270Hs (ref.10) in the fusion reaction between26Mg and248Cm. The hassium atoms are immediately oxidized to a highly volatile oxide, presumably HsO4, for which we determine an enthalpy of adsorption on our detector surface that is comparable to the adsorption enthalpy determined under identical conditions for the osmium oxide OsO4. These results provide evidence that the chemical properties of hassium and its lighter homologue osmium are similar, thus confirming that hassium exhibits properties as expected from its position in group 8 of the periodic table.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic drawing of the IVO-COLD set-up used to produce and isolate Hs isotopes in form of the volatile HsO4.
Figure 2: The seven nuclear decay chains originating from Hs isotopes that were detected in the course of the experiment permit an unambiguous identification of hassium after chemical separation.
Figure 3: Merged thermochromatogram of HsO4 and OsO4.

Similar content being viewed by others

References

  1. Fricke, B. Superheavy elements.Struct. Bonding21, 90–144 (1975)

    Google Scholar 

  2. Pyykkö, P. & Desclaux, J.-P. Relativity and the periodic system of elements.Acc. Chem. Res.12, 276–281 (1979)

    Article  Google Scholar 

  3. Pershina, V. G. Electronic structure and properties of the transactinides and their compounds.Chem. Rev.96, 1977–2010 (1996)

    Article CAS  Google Scholar 

  4. Schwerdtfeger, P. & Seth, M. Relativistic effects of the superheavy elements.Encyclopedia of Computational ChemistryVol. 4 2480–2499 (Wiley, New York, 1998)

    Google Scholar 

  5. Kratz, J. V. inHeavy Elements and Related New Phenomena Ch. 4 (eds Greiner, W. & Gupta, R. K.) 129–193 (World Scientific, Singapore, 1999)

    Book  Google Scholar 

  6. Schädel, M. et al. Chemical properties of element 106 (seaborgium).Nature388, 55–57 (1997)

    Article ADS  Google Scholar 

  7. Eichler, R. et al. Chemical characterization of bohrium (element 107).Nature407, 63–65 (2000)

    Article ADS CAS  Google Scholar 

  8. Hofmann, S. et al. The new element 112.Z. Phys. A354, 229–230 (1996)

    Article ADS CAS  Google Scholar 

  9. Hofmann, S. & Münzenberg, G. The discovery of the heaviest elements.Rev. Mod. Phys.72, 733–767 (2000)

    Article ADS CAS  Google Scholar 

  10. Türler, A. et al. Decay properties of269Hs and evidence for the new nuclide270Hs.Eur. Phys. J. A (submitted)

  11. Münzenberg, G. et al. The identification of element 108.Z. Phys. A317, 235–236 (1984)

    Article ADS  Google Scholar 

  12. Hofmann, S. et al. Production and decay of269110.Z. Phys. A350, 277–280 (1995)

    Article ADS CAS  Google Scholar 

  13. Schädel, M. & Hofmann, S. Prospects for the discovery of new elements.J. Radioanal. Nucl. Chem.203, 283–300 (1996)

    Article  Google Scholar 

  14. Bächmann, K. & Hoffmann, P. Chemische Probleme bei der Darstellung überschwerer Elemente durch Kernreaktionen.Radiochim. Acta15, 153–163 (1971)

    Article  Google Scholar 

  15. Domanov, V. P. & Zvara, I. Continuous-flow thermochromatographic separation of unsupported radioisotopes of platinum elements in a stream of air from nuclear reaction products in an accelerator heavy-ion beam.Sov. Radiochem.26, 731–739 (1985); translated fromRadiokhimiya26, 770–778 (1984)

    Google Scholar 

  16. Zude, F., Fan, W., Trautmann, N., Herrmann, G. & Eichler, B. Thermochromatography of platinum elements in oxygen: Radiochemical studies of the behaviour of rhodium, palladium, osmium and platinum.Radiochim. Acta62, 61–63 (1993)

    Article CAS  Google Scholar 

  17. Zhuikov, B. L., Kruz, H. & Zvara, I. Possibilities of chemical identification of short-lived isotopes of element 108. Report P7-86-322, page 26 (Joint Institute for Nuclear Research, JINR, Dubna, 1986) (in Russian).

  18. Dougan, R. J., Moody, K. J., Hulet, E. K. & Bethune, G. R. OSCAR: An apparatus for on-line gas-phase separations. FY87 Annual Report UCAR 10062/87, 4–17 (Lawrence Livermore National Laboratory, LLNL, Nuclear Chemistry Division, Livermore, 1987).

  19. Pershina, V., Bastug, T., Fricke, B. & Varga, S. The electronic structure and properties of group 8 oxides MO4, where M = Ru, Os, and element 108, Hs.J. Chem. Phys.115, 792–799 (2001)

    Article ADS CAS  Google Scholar 

  20. Düllmann, Ch. E., Eichler, B., Eichler, R., Gäggeler, H. W. & Türler, A. On the stability and volatility of group 8 tetroxides MO4 (M = ruthenium, osmium, and hassium (Z = 108)).J. Phys. Chem. B106, 6679–6684 (2002)

    Article  Google Scholar 

  21. Düllmann, Ch. E. et al. IVO, a device for in situ volatilization and on-line detection of products from heavy ion reactions.Nucl. Instrum. Meth.A 479, 631–639 (2002)

    Article ADS  Google Scholar 

  22. Kirbach, U. W. et al. The cryo-thermochromatographic separator (CTS): A new rapid separation and α-detection system for on-line chemical studies of highly volatile osmium and hassium (Z = 108) tetroxides.Nucl. Instrum. Meth.A 484, 587–594 (2002)

    Article ADS  Google Scholar 

  23. Malmbeck, R. et al. Separation of248Cm from a252Cf neutron source for production of Cm targets.Radiochim. Acta89, 543–549 (2001)

    Article CAS  Google Scholar 

  24. Zvara, I. Thermochromatographic method of separation of chemical elements in nuclear and radiochemistry.Isotopenpraxis26, 251–258 (1990)

    CAS  Google Scholar 

  25. Zvara, I. Simulation of thermochromatographic processes by the Monte Carlo method.Radiochim. Acta38, 95–101 (1985)

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Laboratory for Micro- and Nanotechnology at PSI for manufacturing the PIN-diode sandwiches for the COLD array and the staff of the GSI UNILAC for providing stable, highly intense beams of26Mg as well as the target laboratory for Be foils for the vacuum windows. Support from the European Commission Institute for Transuranium Elements, Karlsruhe, for long-term storage of252Cf and the chemical separation of248Cm is appreciated. These studies were supported in part by the Swiss National Science Foundation and the Chemical Sciences Division of the Office of Basic Energy Sciences, US Department of Energy.

Author information

Authors and Affiliations

  1. Departement für Chemie und Biochemie, Universität Bern, Bern, CH-3012, Switzerland

    Ch. E. Düllmann, H. W. Gäggeler & S. Soverna

  2. Labor für Radio- und Umweltchemie, Paul Scherrer Institut, CH-5232, Villigen, Switzerland

    Ch. E. Düllmann, R. Dressler, B. Eichler, R. Eichler, H. W. Gäggeler, F. Glaus, D. T. Jost, D. Piguet & S. Soverna

  3. Gesellschaft für Schwerionenforschung mbH, Darmstadt, D-64291, Germany

    W. Brüchle, E. Jäger, V. Pershina, M. Schädel, B. Schausten, E. Schimpf, H.-J. Schött & G. Wirth

  4. Institut für Kernchemie, Universität Mainz, Mainz, D-55128, Germany

    K. Eberhardt, P. Thörle & N. Trautmann

  5. Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA

    T. N. Ginter, K. E. Gregorich, D. C. Hoffman, U. W. Kirbach, D. M. Lee, H. Nitsche, J. B. Patin, R. Sudowe & P. M. Zielinski

  6. Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA

    D. C. Hoffman, H. Nitsche & J. B. Patin

  7. Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, P.R. China

    Z. Qin

  8. Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980, Dubna, Russia

    S. N. Timokhin & A. B. Yakushev

  9. Institut für Radiochemie, Technische Universität München, D-85748, Garching, Germany

    A. Türler

  10. Research Center Rossendorf e.V., Dresden, D-01314, Germany

    A. Vahle

Authors
  1. Ch. E. Düllmann
  2. W. Brüchle
  3. R. Dressler
  4. K. Eberhardt
  5. B. Eichler
  6. R. Eichler
  7. H. W. Gäggeler
  8. T. N. Ginter
  9. F. Glaus
  10. K. E. Gregorich
  11. D. C. Hoffman
  12. E. Jäger
  13. D. T. Jost
  14. U. W. Kirbach
  15. D. M. Lee
  16. H. Nitsche
  17. J. B. Patin
  18. V. Pershina
  19. D. Piguet
  20. Z. Qin
  21. M. Schädel
  22. B. Schausten
  23. E. Schimpf
  24. H.-J. Schött
  25. S. Soverna
  26. R. Sudowe
  27. P. Thörle
  28. S. N. Timokhin
  29. N. Trautmann
  30. A. Türler
  31. A. Vahle
  32. G. Wirth
  33. A. B. Yakushev
  34. P. M. Zielinski

Corresponding author

Correspondence toH. W. Gäggeler.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

About this article

Cite this article

Düllmann, C., Brüchle, W., Dressler, R.et al. Chemical investigation of hassium (element 108).Nature418, 859–862 (2002). https://doi.org/10.1038/nature00980

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp