Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

A physical map of the mouse genome

Naturevolume 418pages743–750 (2002)Cite this article

Abstract

A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human–mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of human–mouse homology clone map.
Figure 2: Comparison of radiation hybrid and genetic maps to the physical map of mouse chromosome 2.
Figure 3: Conserved segments between human chromosome 6 (Hsa6) and the mouse genome.
Figure 4: Conserved segments between mouse chromosome 11 and the human genome.
Figure 5: Homology maps of the mouse and human genomes.

Similar content being viewed by others

References

  1. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly ofHaemophilus influenzae Rd.Science269, 496–512 (1995)

    Article CAS PubMed  Google Scholar 

  2. Churcher, C. et al. The nucleotide sequence ofSaccharomyces cerevisiae chromosome IX.Nature387, 84–87 (1997)

    CAS PubMed  Google Scholar 

  3. The yeast genome directory.Nature387 (suppl.), 5 (1997)

  4. TheC. elegans Sequencing Consortium Genome sequence of the nematodeC. elegans: a platform for investigating biology.Science282, 2012–2018 (1998)

    Article  Google Scholar 

  5. Adams, M. D. et al. The genome sequence ofDrosophila melanogaster.Science287, 2185–2195 (2000)

    Article PubMed  Google Scholar 

  6. Lander, E. S. et al. Initial sequencing and analysis of the human genome.Nature409, 860–921 (2001)

    Article CAS PubMed  Google Scholar 

  7. Venter, J. C. et al. The sequence of the human genome.Science291, 1304–1351 (2001)

    Article CAS PubMed  Google Scholar 

  8. Collins, J. & Hohn, B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads.Proc. Natl Acad. Sci. USA75, 4242–4246 (1978)

    Article CAS PubMed PubMed Central  Google Scholar 

  9. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA inEscherichia coli using an F-factor-based vector.Proc. Natl Acad. Sci. USA89, 8794–8797 (1992)

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Coulson, A., Sulston, J., Brenner, S. & Karn, J. Towards a physical map of the genome of the nematodeCaenorhabditis elegans.Proc. Natl Acad. Sci. USA83, 7821–7825 (1986)

    Article CAS PubMed PubMed Central  Google Scholar 

  11. Olson, M. V. et al. Random-clone strategy for genomic restriction mapping in yeast.Proc. Natl Acad. Sci. USA83, 7826–7830 (1986)

    Article CAS PubMed PubMed Central  Google Scholar 

  12. Bentley, D. R. et al. The physical maps for sequencing human chromosomes 1, 6, 9, 10, 13, 20 and X.Nature409, 942–943 (2001)

    Article CAS PubMed  Google Scholar 

  13. McPherson, J. D. et al. A physical map of the human genome.Nature409, 934–941 (2001)

    Article CAS PubMed  Google Scholar 

  14. Green, E. D. Strategies for the systematic sequencing of complex genomes.Nature Rev. Genet.2, 573–583 (2001)

    Article CAS PubMed  Google Scholar 

  15. Dunham, I. et al. The DNA sequence of human chromosome 22.Nature402, 489–495 (1999)

    Article CAS PubMed  Google Scholar 

  16. Waterston, R. & Sulston, J. E. The Human Genome Project: reaching the finish line.Science282, 53–54 (1998)

    Article CAS PubMed  Google Scholar 

  17. Nadeau, J. H. & Taylor, B. A. Lengths of chromosomal segments conserved since divergence of man and mouse.Proc. Natl Acad. Sci. USA81, 814–818 (1984)

    Article CAS PubMed PubMed Central  Google Scholar 

  18. DeBry, R. W. & Seldin, M. F. Human/mouse homology relationships.Genomics33, 337–351 (1996)

    Article CAS PubMed  Google Scholar 

  19. Nadeau, J. H. & Sankoff, D. Counting on comparative maps.Trends Genet.14, 495–501 (1998)

    Article CAS PubMed  Google Scholar 

  20. Thomas, J. W. et al. Comparative genome mapping in the sequence-based era: early experience with human chromosome 7.Genome Res.10, 624–633 (2000)

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Kim, J. et al. Homology-driven assembly of a sequence-ready mouse BAC contig map spanning regions related to the 46-Mb gene-rich euchromatic segments of human chromosome 19.Genomics74, 129–141 (2001)

    Article CAS PubMed  Google Scholar 

  22. Osoegawa, K. et al. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis.Genome Res.10, 116–128 (2000)

    CAS PubMed PubMed Central  Google Scholar 

  23. Hardison, R. C., Oeltjen, J. & Miller, W. Long human–mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome.Genome Res.7, 959–966 (1997)

    Article CAS PubMed  Google Scholar 

  24. Koop, B. F. et al. The human T-cell receptor TCRAC/TCRDC (Cα/Cδ) region: organization, sequence, and evolution of 97.6 kb of DNA.Genomics19, 478–493 (1994)

    Article CAS PubMed  Google Scholar 

  25. Ashworth, L. K. et al. An integrated metric physical map of human chromosome 19.Nature Genet.11, 422–427 (1995)

    Article CAS PubMed  Google Scholar 

  26. Kent, W. J. The BLAST-like alignment tool.Genome Res.12, 656–664 (2002)

    Article CAS PubMed PubMed Central  Google Scholar 

  27. Copeland, N. G. et al. A genetic linkage map of the mouse: current applications and future prospects.Science262, 57–66 (1993)

    Article CAS PubMed  Google Scholar 

  28. Dietrich, W. F. et al. A comprehensive genetic map of the mouse genome.Nature380, 149–152 (1996)

    Article CAS PubMed  Google Scholar 

  29. Cai, W. W. et al. An SSLP marker-anchored BAC framework map of the mouse genome.Nature Genet.29, 133–134 (2001)

    Article CAS PubMed  Google Scholar 

  30. Hudson, T. J. et al. A radiation hybrid map of mouse genes.Nature Genet.29, 201–205 (2001)

    Article CAS PubMed  Google Scholar 

  31. Schuler, G. D. Sequence mapping by electronic PCR.Genome Res.7, 541–550 (1997)

    Article CAS PubMed PubMed Central  Google Scholar 

  32. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool.J. Mol. Biol.215, 403–410 (1990)

    Article CAS PubMed  Google Scholar 

  33. Ross, M. T., LaBrie, S., McPherson, J. P. & Stanton, V. P. inCurrent Protocols in Human Genetics (eds Dracopoli, N. C. et al.) 5.6.1–5.6.5 (Wiley, New York, 1999)

    Google Scholar 

  34. Puttagunta, R. et al. Comparative maps of human 19p13.3 and mouse chromosome 10 allow identification of sequences at evolutionary breakpoints.Genome Res.10, 1369–1380 (2000)

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Carver, E. A. & Stubbs, L. Zooming in on the human–mouse comparative map: genome conservation re-examined on a high-resolution scale.Genome Res.7, 1123–1137 (1997)

    Article CAS PubMed  Google Scholar 

  36. Watkins-Chow, D. E. et al. Genetic mapping of 21 genes on mouse chromosome 11 reveals disruptions in linkage conservation with human chromosome 5.Genomics40, 114–122 (1997)

    Article CAS PubMed  Google Scholar 

  37. Stubbs, L. et al. Detailed comparative map of human chromosome 19q and related regions of the mouse genome.Genomics35, 499–508 (1996)

    Article CAS PubMed  Google Scholar 

  38. Dehal, P. et al. Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution.Science293, 104–111 (2001)

    Article CAS PubMed  Google Scholar 

  39. Pletcher, M. T., Wiltshire, T., Cabin, D. E., Villanueva, M. & Reeves, R. H. Use of comparative physical and sequence mapping to annotate mouse chromosome 16 and human chromosome 21.Genomics74, 45–54 (2001)

    Article CAS PubMed  Google Scholar 

  40. Oeltjen, J. C. et al. Large-scale comparative sequence analysis of the human and murine Bruton's tyrosine kinase loci reveals conserved regulatory domains.Genome Res.7, 315–329 (1997)

    Article CAS PubMed  Google Scholar 

  41. Batzoglou, S., Pachter, L., Mesirov, J. P., Berger, B. & Lander, E. S. Human and mouse gene structure: comparative analysis and application to exon prediction.Genome Res.10, 950–958 (2000)

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Marra, M. A. et al. High throughput fingerprint analysis of large-insert clones.Genome Res.7, 1072–1084 (1997)

    Article CAS PubMed PubMed Central  Google Scholar 

  43. Soderlund, C., Humphray, S., Dunham, A. & French, L. Contigs built with fingerprints, markers, and FPC V4. 7.Genome Res.10, 1772–1787 (2000)

    Article CAS PubMed PubMed Central  Google Scholar 

  44. Zhao, S. et al. Mouse BAC ends quality assessment and sequence analyses.Genome Res.11, 1736–1745 (2001)

    Article PubMed PubMed Central  Google Scholar 

  45. Altschul, S. F. & Gish, W. Local alignment statistics.Methods Enzymol.266, 460–480 (1996)

    Article CAS PubMed  Google Scholar 

  46. Nusbaum, C. et al. A YAC-based physical map of the mouse genome.Nature Genet.22, 388–393 (1999)

    Article CAS PubMed  Google Scholar 

  47. Evans, E. P. inGenetic Variants of the Laboratory Mouse (eds Lyon, M. F., Rastan, S. & Brown, S. D. M.) 1446 (Oxford Univ. Press, New York, 1996)

    Google Scholar 

  48. Pletcher, M. T. et al. Chromosome evolution: the junction of mammalian chromosomes in the formation of mouse chromosome 10.Genome Res.10, 1463–1467 (2000)

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Martindale, D. W. et al. Comparative genomic sequence analysis of the Williams syndrome region (LIMK1-RFC2) of human chromosome 7q11.23.Mamm. Genome11, 890–898 (2000)

    Article CAS PubMed  Google Scholar 

  50. DeSilva, U. et al. Generation and comparative analysis of approximately 3.3 Mb of mouse genomic sequence orthologous to the region of human chromosome 7q11.23 implicated in Williams syndrome.Genome Res.12, 3–15 (2002)

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Wellcome Trust, the National Institutes of Health and the US Department of Energy. We are grateful to the web team at the Sanger Institute for assistance with developing map displays, to P. Deloukas for RH map analysis, and E. Arnold-Berkowits, S. Lo, J. Gill and all present and past members of the Institute for Genomic Research BAC end sequencing team for the sequencing work.

Author information

Authors and Affiliations

  1. The Wellcome Trust Sanger Institute, CB10 1SA, Hinxton, Cambridge, UK

    Simon G. Gregory, Carol E. Scott, Richard S. Evans, Paul W. Burridge, Tony V. Cox, Christopher A. Fox, Richard D. Hutton, Ian R. Mullenger, Kimbly J. Phillips, James Smith, Jim Stalker, Glen J. Threadgold, Tim Hubbard, Jane Rogers & David R. Bentley

  2. Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri, 63108, USA

    Mandeep Sekhon, Kristine Wylie, Asif Chinwalla, John Wallis, LaDeana Hillier, Jason Carter, Tony Gaige, Sara Jaeger, Colin Kremitzki, Dan Layman, Jason Maas, Rebecca McGrane, Kelly Mead, Rebecca Walker, Robert H. Waterston & John D. McPherson

  3. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 4E6, Canada

    Jacqueline Schein, Steven Jones, Michael Smith, Jennifer Asano, Ian Bosdet, Susanna Chan, Suganthi Chittaranjan, Readman Chiu, Chris Fjell, Noreen Girn, Catharine Gray, Ran Guin, Letticia Hsiao, Martin Krzywinski, Reta Kutsche, Soo Sen Lee, Carrie Mathewson, Candice McLeavy, Steve Messervier, Steven Ness, Pawan Pandoh, Anna-Liisa Prabhu, Parvaneh Saeedi, Duane Smailus, Lorraine Spence, Jeff Stott, Sheryl Taylor, Wesley Terpstra, Miranda Tsai, Jill Vardy, Natasja Wye, George Yang & Marco Marra

  4. The Institute for Genomic Research, Rockville, Maryland, 20850, USA

    Shaying Zhao, Sofiya Shatsman, Bola Ayodeji, Keita Geer, Getahun Tsegaye, Alla Shvartsbeyn, Elizabeth Gebregeorgis, Margaret Krol, Daniel Russell, Larry Overton, Joel A. Malek, Mike Holmes, Michael Heaney, Jyoti Shetty, Tamara Feldblyum, William C. Nierman & Claire M. Fraser

  5. Children's Hospital Oakland Research Institute, Oakland, California, 94609, USA

    Kazutoyo Osoegawa, Joseph J. Catanese & Pieter J. de Jong

  6. EMBL—European Bioinformatics Institute, CB10 1SD, Hinxton, Cambridge, UK

    Ewan Birney

  7. Department of Electrical Engineering, Washington University, St Louis, Missouri, 63130, USA

    Dan Fuhrmann

Authors
  1. Simon G. Gregory

    You can also search for this author inPubMed Google Scholar

  2. Mandeep Sekhon

    You can also search for this author inPubMed Google Scholar

  3. Jacqueline Schein

    You can also search for this author inPubMed Google Scholar

  4. Shaying Zhao

    You can also search for this author inPubMed Google Scholar

  5. Kazutoyo Osoegawa

    You can also search for this author inPubMed Google Scholar

  6. Carol E. Scott

    You can also search for this author inPubMed Google Scholar

  7. Richard S. Evans

    You can also search for this author inPubMed Google Scholar

  8. Paul W. Burridge

    You can also search for this author inPubMed Google Scholar

  9. Tony V. Cox

    You can also search for this author inPubMed Google Scholar

  10. Christopher A. Fox

    You can also search for this author inPubMed Google Scholar

  11. Richard D. Hutton

    You can also search for this author inPubMed Google Scholar

  12. Ian R. Mullenger

    You can also search for this author inPubMed Google Scholar

  13. Kimbly J. Phillips

    You can also search for this author inPubMed Google Scholar

  14. James Smith

    You can also search for this author inPubMed Google Scholar

  15. Jim Stalker

    You can also search for this author inPubMed Google Scholar

  16. Glen J. Threadgold

    You can also search for this author inPubMed Google Scholar

  17. Ewan Birney

    You can also search for this author inPubMed Google Scholar

  18. Kristine Wylie

    You can also search for this author inPubMed Google Scholar

  19. Asif Chinwalla

    You can also search for this author inPubMed Google Scholar

  20. John Wallis

    You can also search for this author inPubMed Google Scholar

  21. LaDeana Hillier

    You can also search for this author inPubMed Google Scholar

  22. Jason Carter

    You can also search for this author inPubMed Google Scholar

  23. Tony Gaige

    You can also search for this author inPubMed Google Scholar

  24. Sara Jaeger

    You can also search for this author inPubMed Google Scholar

  25. Colin Kremitzki

    You can also search for this author inPubMed Google Scholar

  26. Dan Layman

    You can also search for this author inPubMed Google Scholar

  27. Jason Maas

    You can also search for this author inPubMed Google Scholar

  28. Rebecca McGrane

    You can also search for this author inPubMed Google Scholar

  29. Kelly Mead

    You can also search for this author inPubMed Google Scholar

  30. Rebecca Walker

    You can also search for this author inPubMed Google Scholar

  31. Steven Jones

    You can also search for this author inPubMed Google Scholar

  32. Michael Smith

    You can also search for this author inPubMed Google Scholar

  33. Jennifer Asano

    You can also search for this author inPubMed Google Scholar

  34. Ian Bosdet

    You can also search for this author inPubMed Google Scholar

  35. Susanna Chan

    You can also search for this author inPubMed Google Scholar

  36. Suganthi Chittaranjan

    You can also search for this author inPubMed Google Scholar

  37. Readman Chiu

    You can also search for this author inPubMed Google Scholar

  38. Chris Fjell

    You can also search for this author inPubMed Google Scholar

  39. Dan Fuhrmann

    You can also search for this author inPubMed Google Scholar

  40. Noreen Girn

    You can also search for this author inPubMed Google Scholar

  41. Catharine Gray

    You can also search for this author inPubMed Google Scholar

  42. Ran Guin

    You can also search for this author inPubMed Google Scholar

  43. Letticia Hsiao

    You can also search for this author inPubMed Google Scholar

  44. Martin Krzywinski

    You can also search for this author inPubMed Google Scholar

  45. Reta Kutsche

    You can also search for this author inPubMed Google Scholar

  46. Soo Sen Lee

    You can also search for this author inPubMed Google Scholar

  47. Carrie Mathewson

    You can also search for this author inPubMed Google Scholar

  48. Candice McLeavy

    You can also search for this author inPubMed Google Scholar

  49. Steve Messervier

    You can also search for this author inPubMed Google Scholar

  50. Steven Ness

    You can also search for this author inPubMed Google Scholar

  51. Pawan Pandoh

    You can also search for this author inPubMed Google Scholar

  52. Anna-Liisa Prabhu

    You can also search for this author inPubMed Google Scholar

  53. Parvaneh Saeedi

    You can also search for this author inPubMed Google Scholar

  54. Duane Smailus

    You can also search for this author inPubMed Google Scholar

  55. Lorraine Spence

    You can also search for this author inPubMed Google Scholar

  56. Jeff Stott

    You can also search for this author inPubMed Google Scholar

  57. Sheryl Taylor

    You can also search for this author inPubMed Google Scholar

  58. Wesley Terpstra

    You can also search for this author inPubMed Google Scholar

  59. Miranda Tsai

    You can also search for this author inPubMed Google Scholar

  60. Jill Vardy

    You can also search for this author inPubMed Google Scholar

  61. Natasja Wye

    You can also search for this author inPubMed Google Scholar

  62. George Yang

    You can also search for this author inPubMed Google Scholar

  63. Sofiya Shatsman

    You can also search for this author inPubMed Google Scholar

  64. Bola Ayodeji

    You can also search for this author inPubMed Google Scholar

  65. Keita Geer

    You can also search for this author inPubMed Google Scholar

  66. Getahun Tsegaye

    You can also search for this author inPubMed Google Scholar

  67. Alla Shvartsbeyn

    You can also search for this author inPubMed Google Scholar

  68. Elizabeth Gebregeorgis

    You can also search for this author inPubMed Google Scholar

  69. Margaret Krol

    You can also search for this author inPubMed Google Scholar

  70. Daniel Russell

    You can also search for this author inPubMed Google Scholar

  71. Larry Overton

    You can also search for this author inPubMed Google Scholar

  72. Joel A. Malek

    You can also search for this author inPubMed Google Scholar

  73. Mike Holmes

    You can also search for this author inPubMed Google Scholar

  74. Michael Heaney

    You can also search for this author inPubMed Google Scholar

  75. Jyoti Shetty

    You can also search for this author inPubMed Google Scholar

  76. Tamara Feldblyum

    You can also search for this author inPubMed Google Scholar

  77. William C. Nierman

    You can also search for this author inPubMed Google Scholar

  78. Joseph J. Catanese

    You can also search for this author inPubMed Google Scholar

  79. Tim Hubbard

    You can also search for this author inPubMed Google Scholar

  80. Robert H. Waterston

    You can also search for this author inPubMed Google Scholar

  81. Jane Rogers

    You can also search for this author inPubMed Google Scholar

  82. Pieter J. de Jong

    You can also search for this author inPubMed Google Scholar

  83. Claire M. Fraser

    You can also search for this author inPubMed Google Scholar

  84. Marco Marra

    You can also search for this author inPubMed Google Scholar

  85. John D. McPherson

    You can also search for this author inPubMed Google Scholar

  86. David R. Bentley

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toDavid R. Bentley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2002_BFnature00957_MOESM1_ESM.zip

This file contains a static version of the mouse fingerprint contig (FPC) map; it is an archive representation of the data at the time of publication. (Start with the file bac.1.0.html). A live, updated version of this data can be seen in CytoView at Ensembl (choose 'MapViewer'), and also at the NCBI (use the 'Jump to chr' box to select chromosome; if searching specific features, select 'cytoview' option to view the map). The FPC map was previous displayed in Ensembl before the availability of sequence covering most of the genome. Since then, Ensembl displays have switched to being sequence based, with the FPC data mapped onto it and visible through the CytoView interface. Both the sequence and the FPC map are being refined as the mouse genome is finished. (ZIP 3564 kb)

This file contains a static version of the map derived from the synteny between the mouse and human genomes (Fig. 5); it is an archive representation of the data at the time of publication. (Start with the file hm.1.1.html). A live, updated version of this data can be seen in SyntenyView at Ensembl.

Copies of these data, plus comparisons and discussion of genetic, RH and clone maps, and an interactive version of the synteny displays of Fig. 5, are available at theWellcome Trust Sanger Institute. (ZIP 1541 kb)

Updated views of the map are available from the authors' websites (http://www.ensembl.org/Mus_musculus/cytoview andhttp://www.ncbi.nlm.nih.gov/genome/guide/mouse), as is an archive version for this publication, plus comparisons and discussion of genetic, RH and clone maps, and an interactive version of the synteny displays of Fig. 5 (http://www.sanger.ac.uk/Projects/M_musculus/publications/fpcmap-2002).

Rights and permissions

About this article

Cite this article

Gregory, S., Sekhon, M., Schein, J.et al. A physical map of the mouse genome.Nature418, 743–750 (2002). https://doi.org/10.1038/nature00957

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp