Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Functional profiling of theSaccharomyces cerevisiae genome

Naturevolume 418pages387–391 (2002)Cite this article

Abstract

Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeastSaccharomyces cerevisiae. DNA sequences dubbed ‘molecular bar codes’ uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TheKanMX deletion cassette module.
Figure 2: Growth of deletion strains exhibiting reduced fitness in galactose medium.
Figure 3: Clustering of genes required for growth in conditions of high osmolarity.
Figure 4: Comparison of expression and fitness profiling data.
Figure 5: The seven phenotypic categories of deletion mutant morphologies.

Similar content being viewed by others

References

  1. Wach, A., Brachat, A. & Phillippsen, P. Guidelines for EUROFAN B0 Program: ORF deletants, plasmid tools, basic functional analyses.EUROFAN [online] 〈http://mips.gsf.de/proj/eurofan/eurofan_1/b0/home_requisites/guideline/sixpack.html〉 (1996).

  2. Winzeler, E. A. et al. Functional characterization of theS. cerevisiae genome by gene deletion and parallel analysis.Science285, 901–906 (1999)

    Article CAS  Google Scholar 

  3. Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption.Nature402, 413–418 (1999)

    Article ADS CAS  Google Scholar 

  4. Piano, F., Schetterdagger, A. J., Mangone, M., Stein, L. & Kemphues, K. J. RNAi analysis of genes expressed in the ovary ofCaenorhabditis elegans.Curr. Biol.10, 1619–1622 (2000)

    Article CAS  Google Scholar 

  5. Fraser, A. G. et al. Functional genomic analysis ofC. elegans chromosome I by systematic RNA interference.Nature408, 325–330 (2000)

    Article ADS CAS  Google Scholar 

  6. Liu, L. X. et al. High-throughput isolation ofCaenorhabditis elegans deletion mutants.Genome Res.9, 859–867 (1999)

    Article CAS  Google Scholar 

  7. Zambrowicz, B. P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells.Nature392, 608–611 (1998)

    Article ADS CAS  Google Scholar 

  8. Hamer, L. et al. Gene discovery and gene function assignment in filamentous fungi.Proc. Natl Acad. Sci. USA98, 5110–5115 (2001)

    Article ADS CAS  Google Scholar 

  9. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions inSaccharomyces cerevisiae.Yeast10, 1793–1808 (1994)

    Article CAS  Google Scholar 

  10. Mewes, H. W. et al. MIPS: a database for genomes and protein sequences.Nucleic Acids Res.28, 37–40 (2000)

    Article ADS CAS  Google Scholar 

  11. Jones, E. W. & Fink, G. R. inThe Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (eds Strathern, J. N., Jones, E. W. & Broach, J. R.) 181–300 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1982)

    Google Scholar 

  12. Posas, F. et al. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor.Cell86, 865–875 (1996)

    Article CAS  Google Scholar 

  13. Yale, J. & Bohnert, H. J. Transcript expression inSaccharomyces cerevisiae at high salinity.J. Biol. Chem.276, 15996–16007 (2001)

    Article CAS  Google Scholar 

  14. Poon, P. P. et al.Saccharomyces cerevisiae Gcs1 is an ADP-ribosylation factor GTPase-activating protein.Proc. Natl Acad. Sci. USA93, 10074–10077 (1996)

    Article ADS CAS  Google Scholar 

  15. Causton, H. C. et al. Remodeling of yeast genome expression in response to environmental changes.Mol. Biol. Cell12, 323–337 (2001)

    Article CAS  Google Scholar 

  16. Roth, F. P., Hughes, J. D., Estep, P. W. & Church, G. M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation.Nature Biotechnol.16, 939–945 (1998)

    Article CAS  Google Scholar 

  17. Li, N. & Snyder, M. A genomic study of the bipolar bud site selection pattern inSaccharomyces cerevisiae.Mol. Biol. Cell12, 2147–2170 (2001)

    Article  Google Scholar 

  18. Benzer, S. On the topography of the genetic fine structure.Proc. Natl Acad. Sci. USA47, 403–415 (1961)

    Article ADS CAS  Google Scholar 

  19. Sherman, F., Fink, G. R. & Hinks, J. B.Methods in Yeast Genetics 145–149 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1986)

    Google Scholar 

  20. Guthrie, C. & Fink, G. R. (eds)Guide to Yeast Genetics and Molecular Biology 12–15 (Academic, San Diego, California, 1991)

  21. Hoffman, C. S. & Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation ofEscherichia coli.Gene57, 267–272 (1987)

    Article CAS  Google Scholar 

  22. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns.Proc. Natl Acad. Sci. USA95, 14863–14868 (1998)

    Article ADS CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Bastiaens, J. Howard Dees, R. Diaz, F. Dietrich, K. Freidel, N. Liebundguth, C. Rebischong, R. Schiavon, J. Schneider, T. Verhoeven and R. Wysoki for technical assistance. G.G. thanks C. Nislow for critical readings of the manuscript. This work was primarily supported by grants from the European Commission and the National Human Genome Research Institute (USA), the Medical Research Council of Canada, and the Swiss Office for Science.

Author information

Authors and Affiliations

  1. Stanford Genome Technology Center, Stanford University, Palo Alto, California, 94304, USA

    Guri Giaever, Keith Anderson, Karen Davis, Zelek Herman, Daniel F. Jaramillo & Ronald W. Davis

  2. Department of Biochemistry, Stanford University School of Medicine, Stanford, California, 94305-5307, USA

    Angela M. Chu, Anna Astromoff, Adam Deutschbauer, Hong Liang, Daniel D. Shoemaker, Elizabeth A. Winzeler, Grace Yen & Ronald W. Davis

  3. Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut, 06520-8103, USA

    Li Ni, Rhonda Bangham, Darlene LaBonte, Hong Liao, Lucy Liu, Chuanyun Luo, Petra Ross-Macdonald, Yonghong Yang & Michael Snyder

  4. Developmental Biology, Yale University,

    Li Ni, Rhonda Bangham, Darlene LaBonte, Hong Liao, Lucy Liu, Chuanyun Luo, Petra Ross-Macdonald, Yonghong Yang & Michael Snyder

  5. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520-8103, USA

    Mark Gerstein & Ning Lan

  6. Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205-2185, USA

    Carla Connelly, Rong Mao, Siew Loon Ooi, Sharon Sookhai-Mahadeo, Elaine Youngman, Kexin Yu & Jef D. Boeke

  7. Genetics, Johns Hopkins University School of Medicine,

    Carla Connelly, Rong Mao, Siew Loon Ooi, Sharon Sookhai-Mahadeo, Elaine Youngman, Kexin Yu & Jef D. Boeke

  8. Department of Genetics, Washington University Medical School, St Louis, Missouri, 63110, USA

    Linda Riles, Matt Curtiss, Julie Wilhelmy & Mark Johnston

  9. Department of Biology, McGill University, Montreal, Québec, H3A 1B1, Canada

    Steeve Véronneau, Marc Lussier, Patrice Menard & Howard Bussey

  10. Rosetta Inpharmatics Inc., Washington, 98034, Kirkland, USA

    Sally Dow, Christopher J. Roberts, Greg Schimmack & Teresa R. Ward

  11. FYSA, Université catholique de Louvain, Place Croix du Sud, 2/20, 1348, Louvain-la-Neuve, Belgium

    Ankuta Lucau-Danila & Francoise Foury

  12. Université Libre de Bruxelles, Laboratoire de Physiologie Cellulaire, IBMM CP300, Gosselies, Belgium

    Bruno André

  13. Departments of Bioengineering and Chemistry, University of California, Berkeley

    Adam P. Arkin & Patrick Flaherty

  14. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Howard Hughes Medical Institute, California, 94720-1770, Berkeley, USA

    Adam P. Arkin & Patrick Flaherty

  15. IRMW, Université Libre de Bruxelles, Brussels, B-1070, Belgium

    Mohamed El Bakkoury & Bart Scherens

  16. Departamento de Microbiologia y Genetica, Instituto de Microbiologia y Bioquimica, CSIC/Universidad de Salamanca, E-37007, Salamanca, Spain

    Rocio Benito & Jose L. Revuelta

  17. Department of Molecular Microbiology, Biozentrum, University of Basel, CH-4056, Basel, Switzerland

    Sophie Brachat & Peter Philippsen

  18. Department of Biology, University of Padova, I-35121, Padova, Italy

    Stefano Campanaro & Giorgio Valle

  19. EUROSCARF, Johann Wolfgang Goethe-Universität, Institute of Microbiology, Frankfurt/Main, D-60439, Germany

    Karl-Dieter Entian, Svenja Hempel, Peter Kötter & Matthias Rose

  20. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, 94720-1770, USA

    Patrick Flaherty

  21. Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, 21702, USA

    David J. Garfinkel, Deanna Gotte, Brenda Shafer, Jeffrey N. Strathern & Ching-yun Wang

  22. Institut fur Mikrobiologie, Heinrich-Heine-Universitat Dusseldorf, Dusseldorf, D-40225, Germany

    Ulrich Güldener & Johannes H. Hegemann

  23. Institute of Biological Sciences, University of Wales, UK, Aberystwyth, Wales, SY23 3DA

    Diane E. Kelly, Steven L. Kelly & David C. Lamb

  24. Department of Biology, Concordia University, Canada, Montreal, Québec, H3G 1M8

    Reginald K. Storms

  25. Katholieke Universiteit Leuven, Laboratory of Gene Technology, Leuven, B-3001, Belgium

    Marleen Voet & Guido Volckaert

Authors
  1. Guri Giaever

    You can also search for this author inPubMed Google Scholar

  2. Angela M. Chu

    You can also search for this author inPubMed Google Scholar

  3. Li Ni

    You can also search for this author inPubMed Google Scholar

  4. Carla Connelly

    You can also search for this author inPubMed Google Scholar

  5. Linda Riles

    You can also search for this author inPubMed Google Scholar

  6. Steeve Véronneau

    You can also search for this author inPubMed Google Scholar

  7. Sally Dow

    You can also search for this author inPubMed Google Scholar

  8. Ankuta Lucau-Danila

    You can also search for this author inPubMed Google Scholar

  9. Keith Anderson

    You can also search for this author inPubMed Google Scholar

  10. Bruno André

    You can also search for this author inPubMed Google Scholar

  11. Adam P. Arkin

    You can also search for this author inPubMed Google Scholar

  12. Anna Astromoff

    You can also search for this author inPubMed Google Scholar

  13. Mohamed El Bakkoury

    You can also search for this author inPubMed Google Scholar

  14. Rhonda Bangham

    You can also search for this author inPubMed Google Scholar

  15. Rocio Benito

    You can also search for this author inPubMed Google Scholar

  16. Sophie Brachat

    You can also search for this author inPubMed Google Scholar

  17. Stefano Campanaro

    You can also search for this author inPubMed Google Scholar

  18. Matt Curtiss

    You can also search for this author inPubMed Google Scholar

  19. Karen Davis

    You can also search for this author inPubMed Google Scholar

  20. Adam Deutschbauer

    You can also search for this author inPubMed Google Scholar

  21. Karl-Dieter Entian

    You can also search for this author inPubMed Google Scholar

  22. Patrick Flaherty

    You can also search for this author inPubMed Google Scholar

  23. Francoise Foury

    You can also search for this author inPubMed Google Scholar

  24. David J. Garfinkel

    You can also search for this author inPubMed Google Scholar

  25. Mark Gerstein

    You can also search for this author inPubMed Google Scholar

  26. Deanna Gotte

    You can also search for this author inPubMed Google Scholar

  27. Ulrich Güldener

    You can also search for this author inPubMed Google Scholar

  28. Johannes H. Hegemann

    You can also search for this author inPubMed Google Scholar

  29. Svenja Hempel

    You can also search for this author inPubMed Google Scholar

  30. Zelek Herman

    You can also search for this author inPubMed Google Scholar

  31. Daniel F. Jaramillo

    You can also search for this author inPubMed Google Scholar

  32. Diane E. Kelly

    You can also search for this author inPubMed Google Scholar

  33. Steven L. Kelly

    You can also search for this author inPubMed Google Scholar

  34. Peter Kötter

    You can also search for this author inPubMed Google Scholar

  35. Darlene LaBonte

    You can also search for this author inPubMed Google Scholar

  36. David C. Lamb

    You can also search for this author inPubMed Google Scholar

  37. Ning Lan

    You can also search for this author inPubMed Google Scholar

  38. Hong Liang

    You can also search for this author inPubMed Google Scholar

  39. Hong Liao

    You can also search for this author inPubMed Google Scholar

  40. Lucy Liu

    You can also search for this author inPubMed Google Scholar

  41. Chuanyun Luo

    You can also search for this author inPubMed Google Scholar

  42. Marc Lussier

    You can also search for this author inPubMed Google Scholar

  43. Rong Mao

    You can also search for this author inPubMed Google Scholar

  44. Patrice Menard

    You can also search for this author inPubMed Google Scholar

  45. Siew Loon Ooi

    You can also search for this author inPubMed Google Scholar

  46. Jose L. Revuelta

    You can also search for this author inPubMed Google Scholar

  47. Christopher J. Roberts

    You can also search for this author inPubMed Google Scholar

  48. Matthias Rose

    You can also search for this author inPubMed Google Scholar

  49. Petra Ross-Macdonald

    You can also search for this author inPubMed Google Scholar

  50. Bart Scherens

    You can also search for this author inPubMed Google Scholar

  51. Greg Schimmack

    You can also search for this author inPubMed Google Scholar

  52. Brenda Shafer

    You can also search for this author inPubMed Google Scholar

  53. Daniel D. Shoemaker

    You can also search for this author inPubMed Google Scholar

  54. Sharon Sookhai-Mahadeo

    You can also search for this author inPubMed Google Scholar

  55. Reginald K. Storms

    You can also search for this author inPubMed Google Scholar

  56. Jeffrey N. Strathern

    You can also search for this author inPubMed Google Scholar

  57. Giorgio Valle

    You can also search for this author inPubMed Google Scholar

  58. Marleen Voet

    You can also search for this author inPubMed Google Scholar

  59. Guido Volckaert

    You can also search for this author inPubMed Google Scholar

  60. Ching-yun Wang

    You can also search for this author inPubMed Google Scholar

  61. Teresa R. Ward

    You can also search for this author inPubMed Google Scholar

  62. Julie Wilhelmy

    You can also search for this author inPubMed Google Scholar

  63. Elizabeth A. Winzeler

    You can also search for this author inPubMed Google Scholar

  64. Yonghong Yang

    You can also search for this author inPubMed Google Scholar

  65. Grace Yen

    You can also search for this author inPubMed Google Scholar

  66. Elaine Youngman

    You can also search for this author inPubMed Google Scholar

  67. Kexin Yu

    You can also search for this author inPubMed Google Scholar

  68. Howard Bussey

    You can also search for this author inPubMed Google Scholar

  69. Jef D. Boeke

    You can also search for this author inPubMed Google Scholar

  70. Michael Snyder

    You can also search for this author inPubMed Google Scholar

  71. Peter Philippsen

    You can also search for this author inPubMed Google Scholar

  72. Ronald W. Davis

    You can also search for this author inPubMed Google Scholar

  73. Mark Johnston

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toRonald W. Davis.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

About this article

Cite this article

Giaever, G., Chu, A., Ni, L.et al. Functional profiling of theSaccharomyces cerevisiae genome.Nature418, 387–391 (2002). https://doi.org/10.1038/nature00935

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp