- Review Article
- Published:
A fresh look at tumor immunosurveillance and immunotherapy
Nature Immunologyvolume 2, pages293–299 (2001)Cite this article
4553Accesses
613Citations
9Altmetric
Abstract
Despite major advances in our understanding of adaptive immunity and dendritic cells, consistent and durable responses to cancer vaccines remain elusive and active immunotherapy is still not an established treatment modality. The key to developing an effective anti-tumor response is understanding why, initially, the immune system is unable to detect transformed cells and is subsequently tolerant of tumor growth and metastasis. Ineffective antigen presentation limits the adaptive immune response; however, we are now learning that the host's innate immune system may first fail to recognize the tumor as posing a danger. Recent descriptions of stress-induced ligands on tumor cells recognized by innate effector cells, new subsets of T cells that regulate tumor tolerance and the development of spontaneous tumors in mice that lack immune effector molecules, beckon a reflection on our current perspectives on the interaction of transformed cells with the immune system and offer new hope of stimulating therapeutic immunity to cancer.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases.Am. J. Med. Sci.105, 487–511 (1893).
Burnet, F. M. Cancer: a biological approach.Br. Med. J.1, 779–786 (1957).
Burnet, F. M. Immunological aspects of malignant disease.Lancet1, 1171–1174 (1967).
Ada, G. The coming of age of tumour immunotherapy.Immunol. Cell Biol.77, 180–185 (1999).
Stutman, O. Immunodepression and malignancy.Adv. Cancer Res.22, 261–422 (1975).
Medzhitov, R. & Janeway, C. Jr Innate immune recognition: mechanisms and pathways.Immunol. Rev.173, 89–97 (2000).
Fuchs, E. J. & Matzinger, P. Is cancer dangerous to the immune system?Semin. Immunol.8, 271–280 (1996).
Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells.Nature Med.5, 1249–1255 (1999).
Gallucci, S. & Matzinger, P. Danger signals: SOS to the immune system.Curr. Opin. Immunol.13, 114–119 (2001).
Matzinger, P. Tolerance, danger, and the extended family.Annu. Rev. Immunol.12, 991–1045 (1994).
Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling.Nature393, 478–480 (1998).
Ridge, J. P., Fuchs, E. J. & Matzinger, P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells.Science271, 1723–1726 (1996).
Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions.Nature393, 480–483 (1998).
Rosenberg, S. A. et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma.Nature Med.4, 321–327 (1998).
Marchand, M. et al. Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3.Int. J. Cancer63, 883–885 (1995).
Jager, E., Jager, D. & Knuth, A. CTL-defined cancer vaccines: perspectives for active immunotherapeutic interventions in minimal residual disease.Cancer Metastasis Rev.18, 143–150 (1999).
Van den Eynde, B. J. & van der Bruggen, P. T cell defined tumor antigens.Curr. Opin. Immunol.9, 684–693 (1997).
Wang, R. F. & Rosenberg, S. A. Human tumor antigens for cancer vaccine development.Immunol. Rev.170, 85–100 (1999).
Houghton, A. N. Cancer antigens: immune recognition of self and altered self.J. Exp. Med.180, 1–4. (1994).
Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma.Science269, 1281–1284 (1995).
Rickinson, A. B. & Moss, D. J. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection.Annu. Rev. Immunol.15, 405–431 (1997).
Pfreundschuh, M. Exploitation of the B cell repertoire for the identification of human tumor antigens.Cancer Chemother. Pharmacol.46, 3–7 (2000).
Robert, J. & Cohen, N. Evolution of immune surveillance and tumor immunity: studies in Xenopus.Immunol. Rev.166, 231–243 (1998).
Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium.Proc. Natl Acad. Sci. USA93, 12445–12450 (1996).
Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells.Science279, 1737–1740 (1998).
Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages.Nature Immunol.1, 119–126 (2000).
Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice.Immunity12, 721–727 (2000).
Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA.Science285, 727–729 (1999).
Whiteside, T. L. & Herberman, R. B. The role of natural killer cells in immune surveillance of cancer.Curr. Opin. Immunol.7, 704–710 (1995).
Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies.Immunol. Today21, 573–583 (2000).
Smyth, M. J. & Godfrey, D. I. NKT cells and tumor immunity: a double edged sword.Nature Immunol.1, 459–460 (2000).
Lanier, L. L. NK cell receptors.Annu. Rev. Immunol.16, 359–393 (1998).
Salcedo, M. Inhibitory role of murine Ly49 lectin-like receptors on natural killer cells.Curr. Top. Microbiol. Immunol.244, 97–105 (1999).
Takei, F., Brennan, J. & Mager, D. L. The Ly 49 family: genes, proteins and recognition of class I MHC.Immunol. Rev.155, 67–77 (1997).
Lopez-Botet, M., Llano, M., Navarro, F. & Bellon, T. NK cell recognition of non-classical HLA class I molecules.Semin. Immunol.12, 109–119 (2000).
Braud, V. M. & McMichael, A. J. Regulation of NK cell functions through interaction of the CD94/NKG2 receptors with the nonclassical class I molecule HLA-E.Curr. Top. Microbiol. Immunol.244, 85–95 (1999).
Park, S. H. & Bendelac, A. CD1-restricted T-cell responses and microbial infection.Nature406, 788–792 (2000).
Moretta, A., Biassoni, R., Bottino, C., Mingari, M. C. & Moretta, L. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis.Immunol. Today21, 228–234 (2000).
Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10.Science285, 730–732 (1999).
Cosman, D. et al. ULBPs, novel MHC class I–related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor.Immunity14, 123–133 (2001).
Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γ δ T cells of MICA and MICB.Proc. Natl Acad. Sci. USA96, 6879–6884 (1999).
Nomura, M. et al. Genomic structures and characterization of Rae1 family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain.J. Biochem. (Tokyo)120, 987–995 (1996).
Gatti, R. A. & Good, R. A. Occurrence of malignancy in immunodeficiency diseases. A literature review.Cancer28, 89–98 (1971).
McClain, K. L. Immunodeficiency states and related malignancies.Cancer Treat. Res.92, 39–61 (1997).
Cannon, M. & Cesarman, E. Kaposi's sarcoma-associated herpes virus and acquired immunodeficiency syndrome-related malignancy.Semin. Oncol.27, 409–419 (2000).
Paller, A. S. Immunodeficiency syndromes. X-linked aγglobulinemia, common variable immunodeficiency, Chediak-Higashi syndrome, Wiskott-Aldrich syndrome, and X-linked lymphoproliferative disorder.Dermatol. Clin.13, 65–71 (1995).
Otley, C. C. & Pittelkow, M. R. Skin cancer inLiver Transpl.ant recipients.Liver Transpl.6, 253–262 (2000).
Aguilar, L. K., Rooney, C. M. & Heslop, H. E. Lymphoproliferative disorders involving Epstein-Barr virus after hemopoietic stem cell transplantation.Curr. Opin. Oncol.11, 96–101 (1999).
Haliotis, T., Ball, J. K., Dexter, D. & Roder, J. C. Spontaneous and induced primary oncogenesis in natural killer (NK)-cell-deficient beige mutant mice.Int. J. Cancer35, 505–513 (1985).
Gershwin, M. E., Ohsugi, Y., Castles, J. J., Ikeda, R. M. & Ruebner, B. Anti-mu induces lymphoma in germfree congenitally athymic (nude) but not in heterozygous (nu/+) mice.J. Immunol.131, 2069–2073 (1983).
Shultz, L. D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice.J. Immunol.154, 180–191 (1995).
Dighe, A. S., Richards, E., Old, L. J. & Schreiber, R. D. Enhancedin vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN γ receptors.Immunity1, 447–456. (1994).
Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice.Proc. Natl Acad. Sci. USA95, 7556–7561 (1998).
Van den Broek, M. F. et al. Decreased tumor surveillance in perforin-deficient mice.J. Exp. Med.184, 1781–1790 (1996).
Street, S. E., Cretney, E. & Smyth, M. J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis.Blood97, 192–197 (2001).
Smyth, M. J., Crowe, N. Y., & Godfrey, D. I. NK cells and NKT cells collaborate in host protection from MCA-induced fibrosarcoma.Int. Immunol.13 (in the press, 2001).
Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma.J. Exp. Med.192, 755–760 (2000).
Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells.J. Exp. Med.191, 661–668 (2000).
Shustov, A. et al. Role of perforin in controlling B-cell hyperactivity and humoral autoimmunity.J. Clin. Invest.106, R39–47 (2000).
Matloubian, M. et al. A role for perforin in downregulating T-cell responses during chronic viral infection.J. Virol.73, 2527–2536 (1999).
Badovinac, V. P., Tvinnereim, A. R. & Harty, J. T. Regulation of antigen-specific CD8(+) T cell homeostasis by perforin and interferon-γ.Science290, 1354–1358 (2000).
Davidson, W. F., Giese, T. & Fredrickson, T. N. Spontaneous development of plasmacytoid tumors in mice with defective fas-fas ligand interactions.J. Exp. Med.187, 1825–1838 (1998).
Shaukaran, V. et al. IFN-γ and lymphocytes prevent primary tumour development and shape tumour immunogenicity.Nature (2001).
Strander, H. & Einhorn, S. Interferons and the tumor cell.Biotherapy8, 213–218 (1996).
Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors.Annu. Rev. Immunol.18, 217–242 (2000).
Ferrone, S. & Marincola, F. M. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance.Immunol. Today16, 487–494 (1995).
Elgert, K. D., Alleva, D. G. & Mullins, D. W. Tumor-induced immune dysfunction: the macrophage connection.J. Leukoc. Biol.64, 275–290 (1998).
Walker, P. R., Saas, P. & Dietrich, P. Y. Tumor expression of Fas ligand (CD95L) and the consequences.Curr. Opin. Immunol.10, 564–572 (1998).
Harding, C., Heuser, J. & Stahl, P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding.Eur. J. Cell Biol.35, 256–263 (1984).
Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigensin vivo.J. Exp. Med.184, 923–930 (1996).
Davis, I. D. An overview of cancer immunotherapy.Immunol. Cell Biol.78, 179–195 (2000).
Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P. K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations.Science278, 117–120 (1997).
Melcher, A. et al. Tumor immunogenicity is determined by the mechanism of cell deathvia induction of heat shock protein expression.Nature Med.4, 581–587 (1998).
Chiodoni, C. et al. Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response.J. Exp. Med.190, 125–133 (1999).
Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs.Nature392, 86–89 (1998).
Greten, T. F. & Jaffee, E. M. Cancer vaccines.J. Clin. Oncol.17, 1047–1060 (1999).
Blachere, N. E. et al. Heat shock protein-peptide complexes, reconstitutedin vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity.J. Exp. Med.186, 1315–1322 (1997).
Sakaguchi, S. Animal models of autoimmunity and their relevance to human diseases.Curr. Opin. Immunol.12, 684–690. (2000).
Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance.Cell101, 455–458 (2000).
Hanninen, A. & Harrison, L. C. γδ T cells as mediators of mucosal tolerance: the autoimmune diabetes model.Immunol. Rev.173, 109–119 (2000).
Hammond, K. J. L. et al. α/β-T cell receptor (TCR)+CD4−CD8− (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10.J. Exp. Med.187, 1047–1056 (1998).
Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway.Nature Immunol.1, 515–520 (2000).
Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity.J. Immunol.163, 5211–5218 (1999).
Onizuka, S. et al. Tumor rejection byin vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody.Cancer Res.59, 3128–3133 (1999).
Seo, N., Tokura, Y., Takigawa, M. & Egawa, K. Depletion of IL-10- and TGF-β-producing regulatory γδ T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells.J. Immunol.163, 242–249 (1999).
Acknowledgements
Supported by grants from the National Health and Medical Research Council of Australia and the Anti-Cancer Council of Victoria. D. I. G. is a recipient of an ADCORP-Diabetes Australia Research Fellowship and donations from Rothschild Australia. Special thanks to L. Lanier for his critique of this review.
Author information
Authors and Affiliations
Cancer Immunology, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Locked Bag 1, A'Beckett St, 8006, Australia
Mark J. Smyth & Joseph A. Trapani
Department of Pathology and Immunology, Monash Medical School, Commercial Road, Prahran, Australia
Dale I. Godfrey
- Mark J. Smyth
You can also search for this author inPubMed Google Scholar
- Dale I. Godfrey
You can also search for this author inPubMed Google Scholar
- Joseph A. Trapani
You can also search for this author inPubMed Google Scholar
Corresponding authors
Correspondence toMark J. Smyth,Dale I. Godfrey orJoseph A. Trapani.
Rights and permissions
About this article
Cite this article
Smyth, M., Godfrey, D. & Trapani, J. A fresh look at tumor immunosurveillance and immunotherapy.Nat Immunol2, 293–299 (2001). https://doi.org/10.1038/86297
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Expression of Immune Checkpoint Regulator Cytotoxic T Lymphocyte Antigen 4 (CTLA-4) and Programmed Cell Death Protein Ligand 1 (PD-L1) in Invasive Ductal Carcinoma Breast
- Preeti Diwaker
- Tanvi Jha
- Navneet Kaur
Indian Journal of Surgical Oncology (2024)
NgR1 is an NK cell inhibitory receptor that destabilizes the immunological synapse
- Se-Chan Oh
- Seong-Eun Kim
- Tae-Don Kim
Nature Immunology (2023)
Chemically programmed STING-activating nano-liposomal vesicles improve anticancer immunity
- Xiaona Chen
- Fanchao Meng
- Hangxiang Wang
Nature Communications (2023)
Stochastic dynamics of tumor growth model under switching
- N Zhang
- D Li
Indian Journal of Physics (2023)
A novel immune prognostic index for stratification of high-risk patients with early breast cancer
- Hannah Lee
- Mi Jeong Kwon
- Young Kee Shin
Scientific Reports (2021)