Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Neuroscience
  • Article
  • Published:

Inhalational anesthetics activate two-pore-domain background K+ channels

Nature Neurosciencevolume 2pages422–426 (1999)Cite this article

Abstract

Volatile anesthetics produce safe, reversible unconsciousness, amnesia and analgesia via hyperpolarization of mammalian neurons. In molluscan pacemaker neurons, they activate an inhibitory synaptic K+ current ( IKAn), proposed to be important in general anesthesia. Here we show that TASK and TREK-1, two recently cloned mammalian two-P-domain K+ channels similar toIKAn in biophysical properties, are activated by volatile general anesthetics. Chloroform, diethyl ether, halothane and isoflurane activated TREK-1, whereas only halothane and isoflurane activated TASK. Carboxy (C)-terminal regions were critical for anesthetic activation in both channels. Thus both TREK-1 and TASK are possibly important target sites for these agents.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chloroform selectively activates TREK-1.
Figure 2: Halothane is a common activator of TREK-1 and TASK.
Figure 3: Isoflurane and diethyl ether differentially activate TREK-1 and TASK.
Figure 4: Clinical doses of inhalational anesthetics activate human TREK-1.
Figure 5: Volatile anesthetics stimulate TREK-1 and TASK in excised-patch configuration.
Figure 6: TheC-terminal regions of TREK-1 and TASK are critical for activation by anesthetics.

Similar content being viewed by others

References

  1. Nicoll, R. A. & Madison, D. V. General anesthetics hyperpolarize neurons in the vertebrate central nervous system.Science 217, 1055–1077 (1982).

    Article CAS  Google Scholar 

  2. Berg-Johnsen, J. & Langmoen, I. A. Isoflurane hyperpolarizes neurones in rat and human cerebral cortex.Acta Physiol. Scand.130, 679–685 (1987).

    Article CAS  Google Scholar 

  3. Felisberti, F., Antkowiak, B. & Kirschfeld, K. Effects of volatile anesthetics on the membrane potential and ion channels of cultured neocortical astrocytes.Brain Res.766, 56–65 ( 1997).

    Article CAS  Google Scholar 

  4. MacIver, M. B. & Kendig, J. J. Anesthetic effects on resting membrane potential are voltage-dependent and agent-specific.Anesthesiology74, 83–88 ( 1991).

    Article CAS  Google Scholar 

  5. Franks, N. P. & Lieb, W. R. Volatile general anesthetics activate a novel neuronal K+ current.Nature 333, 662–664 (1988).

    Article CAS  Google Scholar 

  6. Franks, N. P. & Lieb, W. R. Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels.Science254, 427–430 ( 1991).

    Article CAS  Google Scholar 

  7. Winegar, B. D., Owen, D. F., Yost, C. S., Forsayeth, J. R. & Mayeri, E. Volatile general anesthetics produce hyperpolarization ofAplysia neurons by activation of a discrete population of baseline potassium channels.Anesthesiology85, 889 –900 (1996).

    Article CAS  Google Scholar 

  8. Franks, N. P. & Lieb, W. R. Molecular and cellular mechanisms of general anesthesia.Nature367, 607– 614 (1994).

    Article CAS  Google Scholar 

  9. Lopes, C. M., Franks, N. P. & Lieb, W. R. Actions of general anesthetics and arachidonic acid pathway inhibitors on K+ currents activated by volatile anesthetics and FMRFamide in molluscan neurones.Br. J. Pharmacol. 125, 309–318 (1998).

    Article CAS  Google Scholar 

  10. Sirois, J. E., Pancrazio, J. J., Lynch, C. & Bayliss, D. A. Multiple ionic mechanisms mediate inhibition of rat motoneurones by inhalation anaesthetics.J. Physiol. (Lond.)512, 851 –862 (1998).

    Article CAS  Google Scholar 

  11. Duprat, F. et al. TASK, a human background K+ channel to sense external pH variations near physiological pH.EMBO J. 16, 5464–5471 (1997).

    Article CAS  Google Scholar 

  12. Fink, M.et al. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel.EMBO J.15, 6854–6862 ( 1996).

    Article CAS  Google Scholar 

  13. Fink, M.et al. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids.EMBO J. 17, 3297–3308 (1998).

    Article CAS  Google Scholar 

  14. Lesage, F. et al. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure.EMBO J.15, 1004–1011 (1996).

    Article CAS  Google Scholar 

  15. Lesage, F. et al. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge.EMBO J.15, 6400 –6407 (1996).

    Article CAS  Google Scholar 

  16. Patel, A.et al. A mammalian two pore domain mechano-gated S-type K+ channel.EMBO J.17, 4283– 4290 (1998).

    Article CAS  Google Scholar 

  17. Mihic, S. J. et al. Sites of alcohol and volatile anesthetic action on GABA(A) and glycine receptors.Nature389, 385– 389 (1997).

    Article CAS  Google Scholar 

  18. Harris, R. A., Mihic, S. J., Dildy-Mayfield, J. E. & Machu, T. K. Actions of anesthetics on ligand-gated ion channels: role of receptor subunit composition.FASEB J.9, 1454– 1462 (1995).

    Article CAS  Google Scholar 

  19. Lesage, F. et al. A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties.J. Biol. Chem.271, 4183–4187 ( 1996).

    Article CAS  Google Scholar 

  20. Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K. & Goldstein, S. A. A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem.Nature376, 690–695 ( 1995).

    Article CAS  Google Scholar 

  21. Zhou, X. L., Vaillant, B., Loukin, S. H., Kung, C. & Saimi, Y. YKC1 encodes the depolarization-activated K+ channel in the plasma membrane of yeast.FEBS Lett.373, 170–176 ( 1995).

    Article CAS  Google Scholar 

  22. Reid, J. D. et al. TheS. cerevisiae outwardly-rectifying potassium channel (DUK1) identifies a new family of channels with duplicated pore domains. Receptors Channels4, 51–62 (1996).

    CAS PubMed  Google Scholar 

  23. Gray, A. T., Winegar, B. D., Leonoudakis, D. J., Forsayeth, J. R. & Yost, C. S. TOK1 is a volatile anesthetic stimulated K+ channel.Anesthesiology88, 1076–1084 ( 1998).

    Article CAS  Google Scholar 

  24. Yon, J. & Fried, M. Precise gene fusion by PCR. Nucleic Acids Res.17, 4895 ( 1989).

    Article CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique (CNRS), the Association Française contre les Myopathies (AFM) and the EEC Marie Curie Program. We thank M. Jodar, N. Leroudier, G. Jarretou, V. Briet, Y. Benhamou and Dahvya Doume for technical assistance. We are grateful to C. Martin and S. Storq from Galderma (Valbonne, FRANCE) and to R. Mengual for their assistance with gas chromatography.

Author information

Authors and Affiliations

  1. Institut de Pharmacologie Moléculaire et Cellulaire - CNRS - UPR 411, 660 route des Lucioles, Sophia Antipolis, Valbonne, 06560, France

    Amanda J. Patel, Eric Honoré, Florian Lesage, Michel Fink, Georges Romey & Michel Lazdunski

Authors
  1. Amanda J. Patel
  2. Eric Honoré
  3. Florian Lesage
  4. Michel Fink
  5. Georges Romey
  6. Michel Lazdunski

Corresponding author

Correspondence toMichel Lazdunski.

Rights and permissions

About this article

Cite this article

Patel, A., Honoré, E., Lesage, F.et al. Inhalational anesthetics activate two-pore-domain background K+ channels.Nat Neurosci2, 422–426 (1999). https://doi.org/10.1038/8084

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp