- Article
- Published:
Inhibitory Fc receptors modulatein vivo cytoxicity against tumor targets
Nature Medicinevolume 6, pages443–446 (2000)Cite this article
16kAccesses
2267Citations
153Altmetric
Abstract
Inhibitory receptors have been proposed to modulate thein vivo cytotoxic response against tumor targets for both spontaneous and antibody-dependent pathways1. Using a variety of syngenic and xenograft models, we demonstrate here that the inhibitory FcγRIIB molecule is a potent regulator of antibody-dependent cell-mediated cytotoxicityin vivo, modulating the activity of FcγRIII on effector cells. Although many mechanisms have been proposed to account for the anti-tumor activities of therapeutic antibodies, including extended half-life, blockade of signaling pathways, activation of apoptosis and effector-cell-mediated cytotoxicity, we show here that engagement of Fcγ receptors on effector cells is a dominant component of thein vivo activity of antibodies against tumors. Mouse monoclonal antibodies, as well as the humanized, clinically effective therapeutic agents trastuzumab (Herceptin®) and rituximab (Rituxan®), engaged both activation (FcγRIII) and inhibitory (FcγRIIB) antibody receptors on myeloid cells, thus modulating their cytotoxic potential. Mice deficient in FcγRIIB showed much more antibody-dependent cell-mediated cytotoxicity; in contrast, mice deficient in activating Fc receptors as well as antibodies engineered to disrupt Fc binding to those receptors were unable to arrest tumor growthin vivo. These results demonstrate that Fc-receptor-dependent mechanisms contribute substantially to the action of cytotoxic antibodies against tumors and indicate that an optimal antibody against tumors would bind preferentially to activation Fc receptors and minimally to the inhibitory partner FcγRIIB.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others

Fc-competent multispecific PDL-1/TIGIT/LAG-3 antibodies potentiate superior anti-tumor T cell response

ISB 2001 trispecific T cell engager shows strong tumor cytotoxicity and overcomes immune escape mechanisms of multiple myeloma cells
References
Bolland, S. & Ravetch, J.V. Inhibitory pathways triggered by ITIM-containing receptors.Adv. Immunol.72, 149–177 (1999).
Clynes, R.A., Tekechi, Y., Moroi, Y., Houghton, A. & Ravetch, J.V. Fc receptors are required in passive and active immunity to melanoma.Proc. Natl. Acad. Sci. USA95, 652 (1998).
Hudziak, R. et al. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factorMol. Cell Biol.9, 1165 ( 1989);
Taji, H. et al. Growth inhibition of CD20 positive B lymphoma cell lines by IDEC-C2B8 anti-CD20 monoclonal antibody.Jpn. J. Cancer Res. 89, 748 (1998).
Masui, H., Moroyama, T. & Mendelsohn, J. Mechanism of antitumor activity in mice for anti-epidermal growth factor receptor monoclonal antibodies with different isotypes Cancer Res.46, 5592 (1986);
Waldmann, T.A. Lymphokine receptors: a target for immunotherapy of lymphomas. Ann. Oncol.Supp. 13,5, 1– 45 (1994).
Tutt, A.L.et al. Monoclonal antibody therapy of a B cell lymphoma: signaling activity on tumor cells appears more important than recruitment of effectors. J. Immunol.161, 3176 (1998).
Pegram, M.D. et al. Phase II study of receptor enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2.neu overexpressing metastatic breast cancer refractory to chemotherapy treatmentJ. Clin. Oncol.16, 2659 (1998)
Carter, P.L. et al. Humanization of an anti-p185HER2 antibody for human cancer treatment,Proc. Natl. Acad. Sci. USA89, 4285 (1992).
Leget, G.A. & Czuczman, M.S. Use of Rituximab, the new FDA-approved antibody.Curr. Opin. Oncol.10, 548– 551 (1998)
Kopreski, M., Lipton, A., Harvey, H.A. & Kumar, R. Growth inhibition of breast cancer cell lines by combinations of anti-p185 monoclonal antibody and cytokines.Anticancer Res.16, 433– 436 (1996).
Lewis, G.D. et al. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies.Cancer Immunol. Immunother. 37, 255–263 (1993).
Shan, D., Ledbetter, J.A. & Press, O.W. Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies.Blood91, 1644–1652 (1998).
Takai, T., Li., M., Sylvestre, D., Clynes, R. & Ravetch, J.V. FcR γ chain deletion results in pleiotropic effector cell defects.Cell76, 519– 529 (1994).
Takai, T., Ono, M, Hikida, M., Ohmori, H. & Ravetch, J.V. Augmented humoral and anaphylactic responses in Fc_RIIB deficient mice.Nature379, 346– 349 (1996).
Funakoshi, S., Longo, D.L. & Murphy, W.J. Differentialin vitro andin vivo antitumor effects mediated by anti-CD40 and anti-CD20 monoclonal antibodies against human B-cell lymphomas.J. Immunother.19, 93–101 (1996).
Fan, Z., Masui, H., Altas, I. & Mendelsohn, J. Blockade of epidermal growth factor receptor function by bivalent and monovalent fragments of 225 anti-epidermal growth factor receptor monoclonal antibodies Cancer Res.53, 4322–4328 (1993)
Baselga, J., Norton, L., Albanell, J., Kim, Y.M. & Mendelsohn, J. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the anti-tumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts.Cancer Res. 58, 2825–2831 (1998).
Liu, J., Lester, P., Builder, S. & Shine, J. Characterization of complex formation by humanized anti-IgE monoclonal antibody and monoclonal human IgE.Biochemistry34, 10474– 10482 (1995).
Acknowledgements
We thank D. White for his technical expertise, C. Ritter for her administrative assistance and R. Steinman and M. Nussenzweig for their comments on the manuscript. These studies were supported by grants from the National Institutes of Health, Cancer Research Institute and Genentech.
Author information
Authors and Affiliations
Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Ave, New York , 10021, New York, USA
Raphael A. Clynes, Terri L. Towers & Jeffrey V. Ravetch
Dept. of Immunology, Genentech, 1 DNA Way, South San Francisco, 94080 , California, USA
Leonard G. Presta
- Raphael A. Clynes
You can also search for this author inPubMed Google Scholar
- Terri L. Towers
You can also search for this author inPubMed Google Scholar
- Leonard G. Presta
You can also search for this author inPubMed Google Scholar
- Jeffrey V. Ravetch
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJeffrey V. Ravetch.
Rights and permissions
About this article
Cite this article
Clynes, R., Towers, T., Presta, L.et al. Inhibitory Fc receptors modulatein vivo cytoxicity against tumor targets.Nat Med6, 443–446 (2000). https://doi.org/10.1038/74704
Received:
Accepted:
Issue Date: