Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Article
  • Published:

Systematic variation in gene expression patterns in human cancer cell lines

Nature Geneticsvolume 24pages227–235 (2000)Cite this article

Abstract

We used cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumours from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumour specimens revealed features of the expression patterns in the tumours that had recognizable counterparts in specific cell lines, reflecting the tumour, stromal and inflammatory components of the tumour tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumoursin vivo.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene expression patterns related to the tissue of origin of the cell lines.
Figure 2: Gene expression patterns related to other cell-line phenotypes.
Figure 3: Gene clusters related to tissue characteristics in the cell lines.
Figure 4: Comparison of the gene expression patterns in clinical breast cancer specimens and cultured breast cancer and leukaemia cell lines.
Figure 5: Histologic features of breast cancer biopsies can be recognized and parsed based on gene expression patterns.

Similar content being viewed by others

References

  1. Stinson, S.F. et al. Morphological and immunocytochemical characteristics of human tumor cell lines for use in a disease-oriented anticancer drug screen. Anticancer Res.12, 1035–1053 (1992).

    CAS PubMed  Google Scholar 

  2. Myers, T.G. et al. A protein expression database for the molecular pharmacology of cancer.Electrophoresis18, 647– 653 (1997).

    Article CAS  Google Scholar 

  3. Weinstein, J.N. et al. An information-intensive approach to the molecular pharmacology of cancer.Science275, 343– 349 (1997).

    Article CAS  Google Scholar 

  4. Monks, A., Scudiero, D.A., Johnson, G.S., Paull, K.D. & Sausville, E.A. The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets.Anticancer Drug Des.12, 533–541 ( 1997).

    CAS PubMed  Google Scholar 

  5. Paull, K.D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm.J. Natl Cancer Inst.81, 1088 –1092 (1989).

    Article CAS  Google Scholar 

  6. Weinstein, J.N. et al. Neural computing in cancer drug development: predicting mechanism of action.Science258, 447– 451 (1992).

    Article CAS  Google Scholar 

  7. van Osdol, W.W., Myers, T.G., Paull, K.D., Kohn, K.W. & Weinstein, J.N. Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents.J. Natl Cancer Inst.86, 1853–1859 ( 1994).

    Article CAS  Google Scholar 

  8. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale.Science278, 680– 686 (1997).

    Article CAS  Google Scholar 

  9. Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum.Science283, 83– 87 (1999).

    Article CAS  Google Scholar 

  10. Brown, P.O. & Botstein, D. Exploring the new world of the genome with DNA microarrays.Nature Genet.21 ( suppl.), 33–37 (1999).

    Article CAS  Google Scholar 

  11. Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer.Nature Genet.24, 236– 244 (2000).

    Article CAS  Google Scholar 

  12. Khan, J. et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays.Cancer Res.58, 5009– 5013 (1998).

    CAS PubMed  Google Scholar 

  13. Der, S.D., Zhou, A., Williams, B.R. & Silverman, R.H. Identification of genes differentially regulated by interferon-α, -β or -γ or using oligonucleotide arrays.Proc. Natl Acad. Sci. USA95, 15623 –15628 (1998).

    Article CAS  Google Scholar 

  14. Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA96, 6745– 6750 (1999).

    Article CAS  Google Scholar 

  15. Wang, K. et al. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray.Gene229, 101– 108 (1999).

    Article CAS  Google Scholar 

  16. Tamayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl Acad. Sci. USA96, 2907– 2912 (1999).

    Article CAS  Google Scholar 

  17. Shalon, D., Smith, S.J. & Brown, P.O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization.Genome Res. 6, 639–645 (1996).

    Article CAS  Google Scholar 

  18. Eisen, M.B. & Brown, P.O. DNA arrays for analysis of gene expression .Methods Enzymol.303, 179– 205 (1999).

    Article CAS  Google Scholar 

  19. Sokal, R.R. & Sneath, P.H.A.Principles of Numerical Taxonomy (W.H. Freeman, San Francisco, 1963).

    Google Scholar 

  20. Hartigan, J.A. Clustering Algorithms (Wiley, New York, 1975).

    Google Scholar 

  21. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA95, 14863– 14868 (1998).

    Article CAS  Google Scholar 

  22. del Marmol, V. & Beermann, F. Tyrosinase and related proteins in mammalian pigmentation.FEBS Lett.381, 165–168 (1996).

    Article CAS  Google Scholar 

  23. Kawakami, Y. et al. The use of melanosomal proteins in the immunotherapy of melanoma .J. Immunother.21, 237– 246 (1998).

    Article CAS  Google Scholar 

  24. Cailleau, R., Olive, M. & Cruciger, Q.V. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization.In Vitro14, 911–915 (1978).

    Article CAS  Google Scholar 

  25. Brinkley, B.R. et al. Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro.Cancer Res.40, 3118– 3129 (1980).

    CAS PubMed  Google Scholar 

  26. Nesland, J.M., Holm, R., Johannessen, J.V. & Gould, V.E. Neuroendocrine differentiation in breast lesions.Pathol. Res. Pract.183, 214–221 ( 1988).

    Article CAS  Google Scholar 

  27. Davies, J.A. & Garrod, D.R. Molecular aspects of the epithelial phenotype.Bioessays19, 699– 704 (1997).

    Article CAS  Google Scholar 

  28. Garrod, D., Chidgey, M. & North, A. Desmosomes: differentiation, development, dynamics and disease.Curr. Opin. Cell Biol.8, 670– 678 (1996).

    Article CAS  Google Scholar 

  29. Cowin, P. & Burke, B. Cytoskeleton-membrane interactions .Curr. Opin. Cell Biol.8, 56– 65 (1996); erratum:8, 244 (1996).

    Article CAS  Google Scholar 

  30. Litvinov, S.V. et al. Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins.J. Cell Biol. 139, 1337–1348 (1997).

    Article CAS  Google Scholar 

  31. Helmle-Kolb, C. et al. Na/H exchange activities in NHE1-transfected OK-cells: cell polarity and regulation.Pflugers Arch.425, 34–40 (1993); erratum:427, 387 (1994).

    Article CAS  Google Scholar 

  32. Manfruelli, P., Arquier, N., Hanratty, W.P. & Semeriva, M. The tumor suppressor gene, lethal(2)giant larvae (1(2)g1), is required for cell shape change of epithelial cells during Drosophila development. Development122, 2283–2294 (1996).

    CAS PubMed  Google Scholar 

  33. Lincecum, J.M., Fannon, A., Song, K., Wang, Y. & Sassoon, D.A. Msh homeobox genes regulate cadherin-mediated cell adhesion and cell-cell sorting.J. Cell Biochem.70, 22–28 (1998).

    Article CAS  Google Scholar 

  34. Hackett, A.J. et al. Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines.J. Natl Cancer Inst.58, 1795– 1806 (1977).

    Article CAS  Google Scholar 

  35. Rutka, J.T. et al. Establishment and characterization of a cell line from a human gliosarcoma.Cancer Res.46, 5893– 5902 (1986).

    CAS PubMed  Google Scholar 

  36. Nguyen, H., Hiscott, J. & Pitha, P.M. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev.8, 293– 312 (1997).

    Article CAS  Google Scholar 

  37. Moscow, J.A., Schneider, E., Ivy, S.P. & Cowan, K.H. Multidrug resistance. Cancer Chemother. Biol. Response Modif.17, 139– 177 (1997).

    CAS PubMed  Google Scholar 

  38. Smith, H.S. & Hackett, A.J. The use of cultured human mammary epithelial cells in defining malignant progression.Ann. N Y Acad. Sci.464, 288–300 ( 1986).

    Article CAS  Google Scholar 

  39. Rutka, J.T. et al. Establishment and characterization of five cell lines derived from human malignant gliomas.Acta Neuropathol.75, 92–103 (1987).

    Article CAS  Google Scholar 

  40. Ronnov-Jessen, L., Petersen, O.W. & Bissell, M.J. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction.Physiol. Rev.76, 69–125 ( 1996).

    Article CAS  Google Scholar 

  41. Perou, C.M et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers.Proc. Natl Acad. Sci. USA 96, 9212–9217 (1999).

    Article CAS  Google Scholar 

  42. Bonner, R.F. et al. Laser capture microdissection: molecular analysis of tissue .Science278, 1481–1483 (1997).

    Article CAS  Google Scholar 

  43. Sgroi, D.C. et al. In vivo gene expression profile analysis of human breast cancer progression.Cancer Res.59, 5656– 5661 (1999).

    CAS PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Brown and Botstein labs for helpful discussions. This work was supported by the Howard Hughes Medical Institute and a grant from the National Cancer Institute (CA 077097). The work of U.S. and J.N.W. was supported in part by a grant from the National Cancer Institute Breast Cancer Think Tank. D.T.R is a Walter and Idun Berry Fellow. M.B.E. is an Alfred P. Sloan Foundation Fellow in Computational Molecular Biology. C.M.P. is a SmithKline Beecham Pharmaceuticals Fellow of the Life Science Research Foundation. P.O.B. is an Associate Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

  1. Departments of Biochemistry, Stanford University School of Medicine, Stanford, California, USA

    Douglas T. Ross, Vishwanath Iyer & Patrick O. Brown

  2. Department of Genetics, Stanford University School of Medicine, Stanford, California, USA

    Michael B. Eisen, Charles M. Perou, Christian Rees, Paul Spellman, Alexander Pergamenschikov & David Botstein

  3. Department of Surgery, Stanford University School of Medicine, Stanford, California, USA

    Stefanie S. Jeffrey

  4. Department of Pathology, Stanford University School of Medicine, Stanford, California, USA

    Matt Van de Rijn

  5. Division of Basic Sciences, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA

    Uwe Scherf, Mark Waltham & John N. Weinstein

  6. Incyte Pharmaceuticals, Fremont, California, USA

    Jeffrey C.F. Lee & Dari Shalon

  7. Genometrix Inc, The Woodlands, Texas, USA

    Deval Lashkari

  8. Division of Cancer Treatment and Diagnosis, Information Technology Branch, Developmental Therapeutics Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA

    Timothy G. Myers

  9. Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA

    Patrick O. Brown

Authors
  1. Douglas T. Ross

    You can also search for this author inPubMed Google Scholar

  2. Uwe Scherf

    You can also search for this author inPubMed Google Scholar

  3. Michael B. Eisen

    You can also search for this author inPubMed Google Scholar

  4. Charles M. Perou

    You can also search for this author inPubMed Google Scholar

  5. Christian Rees

    You can also search for this author inPubMed Google Scholar

  6. Paul Spellman

    You can also search for this author inPubMed Google Scholar

  7. Vishwanath Iyer

    You can also search for this author inPubMed Google Scholar

  8. Stefanie S. Jeffrey

    You can also search for this author inPubMed Google Scholar

  9. Matt Van de Rijn

    You can also search for this author inPubMed Google Scholar

  10. Mark Waltham

    You can also search for this author inPubMed Google Scholar

  11. Alexander Pergamenschikov

    You can also search for this author inPubMed Google Scholar

  12. Jeffrey C.F. Lee

    You can also search for this author inPubMed Google Scholar

  13. Deval Lashkari

    You can also search for this author inPubMed Google Scholar

  14. Dari Shalon

    You can also search for this author inPubMed Google Scholar

  15. Timothy G. Myers

    You can also search for this author inPubMed Google Scholar

  16. John N. Weinstein

    You can also search for this author inPubMed Google Scholar

  17. David Botstein

    You can also search for this author inPubMed Google Scholar

  18. Patrick O. Brown

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toJohn N. Weinstein orPatrick O. Brown.

Rights and permissions

About this article

Cite this article

Ross, D., Scherf, U., Eisen, M.et al. Systematic variation in gene expression patterns in human cancer cell lines.Nat Genet24, 227–235 (2000). https://doi.org/10.1038/73432

Download citation

Access through your institution
Buy or subscribe

Associated content

Cancer cells, chemotherapy and gene clusters

  • Daniel Pinkel
Nature GeneticsNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp