Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Article
  • Published:

Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1

Nature Geneticsvolume 19pages148–154 (1998)Cite this article

Abstract

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine tract in ataxin-1. In affected neurons of SCA1 patients and transgenic mice, mutant ataxin-1 accumulates in a single, ubiquitin-positive nuclear inclusion. In this study, we show that these inclusions stain positively for the 20S proteasome and the molecular chaperone HDJ-2/HSDJ. Similarly, HeLa cells transfected with mutant ataxin-1 develop nuclear aggregates which colocalize with the 20S proteasome and endogenous HDJ-2/HSDJ. Overexpression of wild-type HDJ-2/HSDJ in HeLa cells decreases the frequency of ataxin-1 aggregation. These data suggest that protein misfolding is responsible for the nuclear aggregates seen in SCA1, and that overexpression of a DnaJ chaperone promotes the recognition of a misfolded polyglutamine repeat protein, allowing its refolding and/or ubiquitin-dependent degradation.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunohistochemical localization of 20S proteasome in brainstem neurons from an SCA1 patient and Purkinje cells of transgenic mice.
Figure 2: Immunohistochemical staining of HDJ-2/HSDJ in SCA1-patient neurons and transgenic mice Purkinje cells.
Figure 3: Ubiquitin immunostaining in COS7 cells expressing ataxin-1-GFP demonstrates the presence of ubiquitin in ataxin-1 aggregates.
Figure 4: Subcellular localization of 20S proteasome and ataxin-1 in HeLa cells.
Figure 5: Colocalization of endogenous HDJ-2/HSDJ and HSP70 with ataxin-1 nuclear aggregates.
Figure 6: Suppression of ataxin-1 aggregation in cells overexpressing HDJ-2/HSDJ.

Similar content being viewed by others

References

  1. Wisniewski, T., Ghiso, J. & Frangione, B. Biology of A beta amyloid in Alzheimer's disease.Neurobiol. Dis.4, 313–328 (1997)

    Article CAS PubMed  Google Scholar 

  2. Polymeropoulos, M.H. et al. Mutation in the α-Synuclein Gene Identified in Families with Parkinson's Disease.Science276, 2045–2047 (1997)

    Article CAS PubMed  Google Scholar 

  3. Prusiner, S.B. Prion diseases and the BSE crisis.Science278, 245–251 (1997)

    Article CAS PubMed  Google Scholar 

  4. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation.Cell90, 537–548 (1997)

    Article CAS PubMed  Google Scholar 

  5. DiFiglia, M. et al. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain.Science277, 1990–1993 (1997)

    Article CAS PubMed  Google Scholar 

  6. Igarashi, S. et al. Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch.Nature Genet.18, 111–117 (1998)

    Article CAS PubMed  Google Scholar 

  7. Skinner, P.J. et al. Ataxin-1 with extra glutamines induces alterations in nuclear matrix-associated structures.Nature389, 971–974 (1997)

    Article CAS PubMed  Google Scholar 

  8. Paulson, H.L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia Type 3.Neuron19, 333–334 (1997)

    Article CAS PubMed  Google Scholar 

  9. Zoghbi, H.Y. & Orr, H.T. Spinocerebellar ataxia type 1.Semin. Cell Biol.6, 29–35 (1995)

    Article CAS PubMed  Google Scholar 

  10. Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases .Proc. Natl. Acad. Sci. USA91, 5355–5358 (1994)

    Article CAS PubMed PubMed Central  Google Scholar 

  11. Stott, K., Blackburn, J.M., Butler, P.J.G. & Perutz, M. Incorporation of glutamine repeats makes protein oligomerize: Implications for neurodegenerative diseases.Proc. Natl. Acad. Sci. USA92, 6509–6513 (1995)

    Article CAS PubMed PubMed Central  Google Scholar 

  12. Hershko, A. & Ciechanover, A. The ubiquitin system for protein degradation.Annu. Rev. Biochem.61, 761 –807 (1992)

    Article CAS PubMed  Google Scholar 

  13. Hochstrasser, M. Ubiquitin-dependent protein degradation.Annu. Rev. Genet.30, 405–439 (1996)

    Article CAS PubMed  Google Scholar 

  14. Adams, G.M. et al. Structural and Functional Effects of PA700 and Modular Protein on Proteasomes .J. Mol. Biol.273, 646–657 (1997)

    Article CAS PubMed  Google Scholar 

  15. Coux, O., Tanaka, K. & Goldberg, A.L. Structure and functions of the 20S and 26S proteasomes .Annu. Rev. Biochem.65, 801–847 (1996)

    Article CAS PubMed  Google Scholar 

  16. Bush, K.T., Goldberg, A.L. & Nigam, S.K. Proteasome Inhibition Leads to a Heat-shock Response, Induction of Endoplasmic Reticulum Chaperones, and Thermotolerance.J. Biol. Chem.272, 9086–9092 (1997)

    Article CAS PubMed  Google Scholar 

  17. Zhou, M., Wu, X. & Ginsberg, H.N. Evidence that a rapidly turning over protein, normally degraded by proteasomes, regulates hsp72 gene transcription in HepG2 cells.J. Biol. Chem.271, 247–269 ( 1996)

    Google Scholar 

  18. Lee, D.H. & Goldberg, A.L. Proteasome Inhibitors Cause Induction of Heat Shock Proteins and Trehalose, Which Together Confer Thermotolerance in Saccharomyces cerevisiae.Mol. Cell. Biol.18, 30–38 (1998)

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Bukau, B. & Horwich, A.L. The Hsp70 and Hsp60 Chaperone Machines .Cell92, 351–366 (1998)

    Article CAS PubMed  Google Scholar 

  20. Lu, Z. & Cyr, D.M. The Conserved Carboxyl Terminus and Zinc Finger-Like Domain of the Co-chaperone Ydj1 Assist Hsp70 in Protein Folding .J. Biol. Chem.273, 5970–5978 (1998)

    Article CAS PubMed  Google Scholar 

  21. Hartl, F.U. Molecular chaperones in cellular protein folding.Nature381, 571–580 (1996)

    Article CAS PubMed  Google Scholar 

  22. Hendricks, J.P. & Hartl, F. -U.Molecular chaperone functions of heat shock proteins.Annu. Rev. Biochem.62, 349–384 (1993)

    Article  Google Scholar 

  23. Sherman, M.Y. & Goldberg, A.L. Involvement of chaperonin dnaK in the rapid degradation of a mutant protein inEscherichia coli.EMBO J.11, 71–77 ( 1992)

    CAS  Google Scholar 

  24. Straus, D.B., Walter, W.A. & Gross, C.A.Escherichia coli heat shock gene mutants are defective in proteolysis .Genes Dev.2, 1851–1858 (1988)

    Article CAS PubMed  Google Scholar 

  25. Johnson, E.S., Bartel, B., Seufert, W. & Varshavsky, V. Ubiquitin as a degradation signal.EMBO J.11, 497–505 (1992)

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Lee, D.H., Sherman, M.Y. & Goldberg, A.L. Involvement of the Molecular Chaperone Ydj1 in the Ubiquitin-Dependent Degradation of Short-Lived and Abnormal Proteins inSaccharomyces cerevisiae.Mol. Cell. Biol.16, 4773–4781 (1996)

    Article CAS PubMed PubMed Central  Google Scholar 

  27. Burright, E.N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat.Cell82, 937–948 (1995)

    Article CAS PubMed  Google Scholar 

  28. Attaix, D. et al. Expression of subunits of the 19S complex and of the PA28 activator in rat skeletal muscle.Mol. Biol. Rep.24, 95–98 (1997)

    Article CAS PubMed  Google Scholar 

  29. Chellaiah, A., Davis, A. & Mohanakumar, T. Cloning of a unique human homologue of theEscherichia coli DANJ heat shock protein.Biochim. Biophys. Acta1174, 111–113 (1993)

    Article CAS PubMed  Google Scholar 

  30. Oh, S., Iwahori, A. & Kato, S. Human cDNA encoding DnaJ protein homologue.Biochim. Biophys. Acta1174, 114–116 ( 1993)

    Article CAS PubMed  Google Scholar 

  31. Cyr, D.M., Lu, X. & Douglas, M.G. Regulation of Hsp70 function by a eukaryotic DnaJ homolog.J. Biol. Chem.267, 20927–20931 ( 1992)

    CAS PubMed  Google Scholar 

  32. Tang, Y., Ramakrishnan, C., Thomas, J. & DeFranco, D.B. A Role for HDJ-2/HSDJ in Correcting Subnuclear Trafficking, Transactivation, and Transrepression Defects of a Glucocorticoid Receptor Zinc Finger Mutant.Mol. Biol. Cell8, 795–809 ( 1997)

    Article CAS PubMed PubMed Central  Google Scholar 

  33. Schirmer, E.C. & Lindquist, S. Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP.Proc. Natl. Acad. Sci. USA94, 13932–13937 ( 1997)

    Article CAS PubMed PubMed Central  Google Scholar 

  34. DebBurman, S.K., Raymond, G.J., Caughey, B. & Lindquist, S. Chaperone-supervised conversion of prion protein to its protease-resistant form.Proc. Natl. Acad. Sci. USA94, 13938 –13943 (1997)

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Welch, W.J. & Gambetti, P. Chaperoning Brain Diseases.Nature392, 23–24 ( 1998)

    Article CAS PubMed  Google Scholar 

  36. Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G. & Liebman, S.W. Role of the Chaperone Protein Hsp104 in Propagation of the Yeast Prion-Like Factor [psi+].Science268, 880–883 (1995)

    Article CAS PubMed  Google Scholar 

  37. Cyr, D.M., Langer, T. & Douglas, M.G. DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70 .Trends Biochem. Sci.19, 176–181 (1994)

    Article CAS PubMed  Google Scholar 

  38. Dienel, G., Kiessling, M., Soubrie, P., Bockaert, J. & Pin, J. Synthesis of heat shock proteins in rat brain cortex after transient ischemia.J. Cereb. Blood Flow Metab.6, 505–510 (1986)

    Article CAS PubMed  Google Scholar 

  39. Brown, I.R. Induction of heat shock (stress) genes in the mammalian brain by hyperthermia and other traumatic events: a current perspective.J. Neurosci. Res.27, 247–255 (1990)

    Article CAS PubMed  Google Scholar 

  40. Cyr, D.M. Cooperation of the molecular chaperone Ydj1 with specific Hsp70 homologs to suppress protein aggregation.FEBS Lett.359, 129–132 (1995)

    Article CAS PubMed  Google Scholar 

  41. Schumacher, R.J. et al. Cooperative action of Hsp70, Hsp90, and DnaJ proteins in protein renaturation .Biochemistry35, 14889–14898 (1996)

    Article CAS PubMed  Google Scholar 

  42. Matilla, T. et al. The cerebellar leucine rich acidic nuclear protein interacts with ataxin-1 .Nature389, 974–978 (1997)

    Article CAS PubMed  Google Scholar 

  43. Shibatani, T. & Ward, W.F. Sodium dodecyl sulfate (SDS) activation of the 20S proteasome in rat liver.Arch. Biochem. Biophys.321, 160–166 (1995)

    Article CAS PubMed  Google Scholar 

  44. Servadio, A. et al. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals.Nature Genet.10, 94–98 (1995)

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

We thank W.F. Ward for the anti-proteasome antisera, G.N. DiMartino for anti-PA700 and anti-P31 antisera, J. K. Dunn for advice on statistical analyses, A.L. Beaudet, O.Lichtarge and W.E. O'Brien for their critical reading of the manuscript, and V. Brandt for her editorial help. This work is supported by grant from the National Institutes of Heath (NS27699 and NS22920) and by the Baylor Mental Retardation Research Center. H.Y.Z. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

  1. Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA

    Christopher J. Cummings & Huda Y. Zoghbi

  2. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA

    Huda Y. Zoghbi

  3. Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA

    Michael A. Mancini

  4. Department of Pathology, Baylor College of Medicine, Houston, Texas, USA

    Barbara Antalffy

  5. Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA

    Christopher J. Cummings

  6. Howard Hughes Medical Institute, Houston , Texas, USA

    Huda Y. Zoghbi

  7. Department of Biological Sciences and Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

    Donald B. DeFranco

  8. Departments of Laboratory Medicine and Pathology, and Biochemistry and Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, USA

    Harry T. Orr

Authors
  1. Christopher J. Cummings

    You can also search for this author inPubMed Google Scholar

  2. Michael A. Mancini

    You can also search for this author inPubMed Google Scholar

  3. Barbara Antalffy

    You can also search for this author inPubMed Google Scholar

  4. Donald B. DeFranco

    You can also search for this author inPubMed Google Scholar

  5. Harry T. Orr

    You can also search for this author inPubMed Google Scholar

  6. Huda Y. Zoghbi

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toHuda Y. Zoghbi.

Rights and permissions

About this article

Cite this article

Cummings, C., Mancini, M., Antalffy, B.et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1.Nat Genet19, 148–154 (1998). https://doi.org/10.1038/502

Download citation

Access through your institution
Buy or subscribe

Associated content

Toxic-waste management in neurons

  • Barbara Cohen
Nature GeneticsNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp