Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Spectroscopic mapping of voltage sensor movement in theShaker potassium channel

Naturevolume 402pages813–817 (1999)Cite this article

Abstract

Voltage-gated ion channels underlie the generation of action potentials and trigger neurosecretion and muscle contraction. These channels consist of an inner pore-forming domain, which contains the ion permeation pathway and elements of its gates, together with four voltage-sensing domains, which regulate the gates1,2,3,4,5,6. To understand the mechanism of voltage sensing it is necessary to define the structure and motion of the S4 segment, the portion of each voltage-sensing domain that moves charged residues across the membrane in response to voltage change7,8,9,10,11,12,13,14. We have addressed this problem by using fluorescence resonance energy transfer as a spectroscopic ruler15,16,17 to determine distances between S4s in theShaker K+ channel in different gating states. Here we provide evidence consistent with S4 being a tilted helix that twists during activation. We propose that helical twist contributes to the movement of charged side chains across the membrane electric field and that it is involved in coupling voltage sensing to gating.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FRET efficiency by indirect donor lifetime measurement.
Figure 2: Steady-state and dynamic measurement of FRET efficiency change with activation.
Figure 3: Activation motion of S4 can be accounted for by a helical twist of 180°.

Similar content being viewed by others

References

  1. Kubo,Y., Baldwin,T. J., Jan,Y. N. & Jan,L. Y. Primary structure and functional expression of a mouse inward rectifier potassium channel.Nature362, 127–133 (1993).

    Article ADS CAS  Google Scholar 

  2. Doyle,D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity.Science280, 69–77 (1998).

    Article ADS CAS  Google Scholar 

  3. MacKinnon,R., Cohen,S. L., Kuo,A., Lee,A. & Chait,B. T. Structural conservation in prokaryotic and eukaryotic potassium channels.Science280, 106–109 (1998).

    Article ADS CAS  Google Scholar 

  4. Perozo,E., Cortes,D. M. & Cuello,L. G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy.Nature Struct. Biol.5, 459–469 (1998).

    Article CAS  Google Scholar 

  5. Perozo,E., Cortes,D. M. & Cuello,L. G. Structural rearrangements underlying K+ channel activation gating.Science285, 73–78 (1999).

    Article CAS  Google Scholar 

  6. Yellen,G. The moving parts of voltage-gated ion channels.Q. Rev. Biophys.31, 239–295 (1998).

    Article CAS  Google Scholar 

  7. Aggarwal,S. K. & MacKinnon,R. Contribution of the S4 segment to gating charge in theShaker K+ channel.Neuron16, 1169–1177 (1996).

    Article CAS  Google Scholar 

  8. Yang,N. & Horn,R. Evidence for voltage-dependent S4 movement in sodium channels.Neuron15, 213–218 (1995).

    Article CAS  Google Scholar 

  9. Larsson,H. P., Baker,O. S., Dhillon,D. S. & Isacoff,E. Y. Transmembrane movement of theShaker K+ channel S4.Neuron16, 387–397 (1996).

    Article CAS  Google Scholar 

  10. Mannuzzu,L. M., Moronne,M. M. & Isacoff,E. Y. Direct physical measure of conformational rearrangement underlying potassium channel gating.Science271, 213–216 (1996).

    Article ADS CAS  Google Scholar 

  11. Yang,N., George,A. L. Jr & Horn,R. Molecular basis of charge movement in voltage-gated sodium channels.Neuron16, 113–122 (1996).

    Article  Google Scholar 

  12. Yusaf,S. P., Wray,D. & Sivaprasadarao,A. Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel.Pflugers Arch.433, 91–97 (1996).

    Article CAS  Google Scholar 

  13. Starace,D. M., Stefani,E. & Bezanilla,F. Voltage-dependent proton transport by the voltage sensor of theShaker K+ channel.Neuron19, 1319–1327 (1997).

    Article CAS  Google Scholar 

  14. Baker,O. S., Larsson,H. P., Mannuzzu,L. M. & Isacoff,E. Y. Three transmembrane conformations and sequence-dependent displacement of the S4 domain inShaker K+ channel gating.Neuron20, 1283–1294 (1998).

    Article CAS  Google Scholar 

  15. Stryer,L. Fluorescence energy transfer as a spectroscopic ruler.Annu. Rev. Biochem.47, 819–846 (1978).

    Article CAS  Google Scholar 

  16. Cantor,C. R. & Schimmel,P. R.Biophysical Chemistry. Part II: Techniques for the Study of Biological Structure and Function (W. H. Freeman, New York, 1980).

    Google Scholar 

  17. Van Der Meer,B. W., Coker,G. & Chen,S. Y. D.Resonance Energy Transfer: Theory and Data (Wiley, New York, 1994).

  18. Jovin,T. M. & Arndt-Jovin,D. J. inCell Structure and Function by Microspectrofluorometry (eds Kohen, E., Hirschberg, J. G. & Ploem, J. S.) 99–117 (Academic, New York, 1989).

    Book  Google Scholar 

  19. Isacoff,E. Y., Jan,Y. N. & Jan,L. Y. Evidence for the formation of heteromultimeric potassium channels inXenopus oocyte.Nature345, 530–534 (1990).

    Article ADS CAS  Google Scholar 

  20. Peled-Zehavi,H., Arkin,I. T., Engelman,D. M. & Shai,Y. Coassembly of synthetic segments of Shaker K+ channel within phospholipid membranes.Biochemistry35, 6828–6838 (1996).

    Article CAS  Google Scholar 

  21. Catterall,W. A. Structure and function of voltage-gated ion channels.Annu. Rev. Biochem.64, 493–531 (1995).

    Article CAS  Google Scholar 

  22. Durell,S. R., Hao,Y. & Guy,H. R. Structural models of the transmembrane region of voltage-gated and other K+ channels in open, closed, and inactivated conformations.J. Struct. Biol.121, 263–284 (1998).

    Article CAS  Google Scholar 

  23. Fretch,G. C., VanDongen,A. M. J., Schuster,G., Brown,A. M. & Joho,R. H. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning.Nature340, 642–645 (1989).

    Article ADS  Google Scholar 

  24. Isacoff,E. Y., Jan,Y. N. & Jan,L. Y. Putative receptor for the cytoplasmic inactivation gate in theShaker K+ channel.Nature353, 86–90 (1991).

    Article ADS CAS  Google Scholar 

  25. Cha,A. & Bezanilla,F. Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence.Neuron19, 1127–1140 (1997).

    Article CAS  Google Scholar 

  26. Dale,R. E., Eisinger,J. & Blumberg,W. E. The orientation freedom of molecular probes. The orientation factor in intramolecular energy transfer.Biophys. J.26, 161–193 (1979).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Llewelyn for making the linked dimers, and A. Glazer, H. Lecar, J. Ngai, E. Loots, O. Baker, H. P. Larsson, M. Moronne and all the other members of the laboratory for helpful discussions. This work was supported by grants from NIH, American Heart Foundation, CA Affiliate, Department of Energy and Lawrence Berkeley National Laboratory Physical Bioscience Division.

Author information

Authors and Affiliations

  1. Department of Molecular & Cell Biology, University of California, Berkeley, 271 Life Science Addition, Berkeley, 94720-3200, California, USA

    K. S. Glauner, L. M. Mannuzzu, C. S. Gandhi & E. Y. Isacoff

Authors
  1. K. S. Glauner
  2. L. M. Mannuzzu
  3. C. S. Gandhi
  4. E. Y. Isacoff

Corresponding author

Correspondence toE. Y. Isacoff.

Rights and permissions

About this article

Cite this article

Glauner, K., Mannuzzu, L., Gandhi, C.et al. Spectroscopic mapping of voltage sensor movement in theShaker potassium channel.Nature402, 813–817 (1999). https://doi.org/10.1038/45561

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp