- Letter
- Published:
Gene expression profiling predicts clinical outcome of breast cancer
- Laura J. van 't Veer1 na1,
- Hongyue Dai2 na1,
- Marc J. van de Vijver1 na1,
- Yudong D. He2 na1,
- Augustinus A. M. Hart1,
- Mao Mao2 na1,
- Hans L. Peterse1,
- Karin van der Kooy1,
- Matthew J. Marton2 na1,
- Anke T. Witteveen1,
- George J. Schreiber2 na1,
- Ron M. Kerkhoven1,
- Chris Roberts2 na1,
- Peter S. Linsley2 na1,
- René Bernards1 &
- …
- Stephen H. Friend2 na1
Naturevolume 415, pages530–536 (2002)Cite this article
149kAccesses
8063Citations
268Altmetric
Abstract
Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour1,2,3. Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however, 70–80% of patients receiving this treatment would have survived without it4,5. None of the signatures of breast cancer gene expression reported to date6,7,8,9,10,11,12 allow for patient-tailored therapy strategies. Here we used DNA microarray analysis on primary breast tumours of 117 young patients, and applied supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases (‘poor prognosis’ signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours ofBRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
McGuire, W. L. Breast cancer prognostic factors: evaluation guidelines.J. Natl Cancer Inst.83, 154–155 (1991).
Goldhirsch, A., Glick, J. H., Gelber, R. D. & Senn, H. J. Meeting highlights: international consensus panel on the treatment of primary breast cancer.J. Natl Cancer Inst.90, 1601–1608 (1998).
Eifel, P. et al. National institutes of health consensus development conference statement: adjuvant therapy for breast cancer, November 1–3, 2000.J. Natl Cancer Inst.93, 979–989 (2001).
Early Breast Cancer Trialists' Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials.Lancet352, 930–942 (1998).
Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials.Lancet351, 1451–1467 (1998).
Perou, C. M. et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers.Proc. Natl Acad. Sci. USA96, 9212–9217 (1999).
Perou, C. M. et al. Molecular portraits of human breast tumours.Nature406, 747–752 (2000).
Gruvberger, S. et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns.Cancer Res.61, 5979–5984 (2001).
Martin, K. J. et al. Linking gene expression patterns to therapeutic groups in breast cancer.Cancer Res.60, 2232–2238 (2000).
Zajchowski, D. A. et al. Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells.Cancer Res.61, 5168–5178 (2001).
Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.Proc. Natl Acad. Sci. USA98, 10869–10874 (2001).
West, M. et al. Predicting the clinical status of human breast cancer by using gene expression profiles.Proc. Natl Acad. Sci. USA98, 11462–11467 (2001).
Hughes, T. R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer.Nature Biotechnol.19, 342–347 (2001).
Roberts, C. J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles.Science287, 873–880 (2000).
Lakhani, S. R. et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations.J. Natl Cancer Inst.90, 1138–1145 (1998).
Brenton, J. D., Aparicio, S. A. & Caldas, C. Molecular profiling of breast cancer: portraits but not physiognomy.Breast Cancer Res.3, 77–80 (2001).
Khan, J. et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks.Naure Med.7, 673–679 (2001).
He, Y. D. & Friend, S. H. Microarrays—the 21st century divining rod?Nature Med.7, 658–659 (2001).
Bieche, I. et al. Genetic alterations in breast cancer.Genes Chromosomes Cancer14, 227–251 (1995).
Steeg, P. S. & Zhou, Q. Cyclins and breast cancer.Breast Cancer Res. Treat.52, 17–28 (1998).
Janicke, F. et al. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1.J. Natl Cancer Inst.93, 913–920 (2001).
van Diest, P. J. et al. Cyclin D1 expression in invasive breast cancer. Correlations and prognostic value.Am. J. Pathol.150, 705–711 (1997).
Zheng, L., Annab, L. A., Afshari, C. A., Lee, W. H. & Boyer, T. G. BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor.Proc. Natl Acad. Sci. USA98, 9587–9592 (2001).
Esteller, M. et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors.J. Natl Cancer Inst.92, 564–569 (2000).
Chapman, M. S. & Verma, I. M. Transcriptional activation by BRCA1.Nature382, 678–679 (1996).
Hedenfalk, I. et al. Gene-expression profiles in hereditary breast cancer.N. Engl. J. Med.344, 539–548 (2001).
Acknowledgements
We thank D. Atsma and D. Majoor for assistance with the histological analyses and the preparation of tumour RNA; T. van der Velde, W. van Waardenburg and O. Dalesio for medical record data extraction; D. Slade, J. McDonald, J. Koch, T. Erkkila, M. Parrish and others at Rosetta's High Throughput Gene Expression Profiling Facility for microarray experiments; R. Stoughton, F. van Leeuwen, M. Rookus, P. Nederlof, F. Hogervorst and D. Voskuil for suggestions; and A. Berns, L. Hartwell, J. Radich and S. Rodenhuis for support and reading of the manuscript. This work was supported by a grant from the Center for Biomedical Genetics.
Author information
Laura J. van 't Veer, Hongyue Dai, Marc J. van de Vijver, Yudong D. He, Mao Mao, Matthew J. Marton, George J. Schreiber, Chris Roberts, Peter S. Linsley and Stephen H. Friend: These authors contributed equally to this work
Authors and Affiliations
Divisions of Diagnostic Oncology, Radiotherapy and Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, Amsterdam, 1066 CX, The Netherlands
Laura J. van 't Veer, Marc J. van de Vijver, Augustinus A. M. Hart, Hans L. Peterse, Karin van der Kooy, Anke T. Witteveen, Ron M. Kerkhoven & René Bernards
Rosetta Inpharmatics, 12040 115th Avenue NE, Kirkland, 98034, Washington, USA
Hongyue Dai, Yudong D. He, Mao Mao, Matthew J. Marton, George J. Schreiber, Chris Roberts, Peter S. Linsley & Stephen H. Friend
- Laura J. van 't Veer
Search author on:PubMed Google Scholar
- Hongyue Dai
Search author on:PubMed Google Scholar
- Marc J. van de Vijver
Search author on:PubMed Google Scholar
- Yudong D. He
Search author on:PubMed Google Scholar
- Augustinus A. M. Hart
Search author on:PubMed Google Scholar
- Mao Mao
Search author on:PubMed Google Scholar
- Hans L. Peterse
Search author on:PubMed Google Scholar
- Karin van der Kooy
Search author on:PubMed Google Scholar
- Matthew J. Marton
Search author on:PubMed Google Scholar
- Anke T. Witteveen
Search author on:PubMed Google Scholar
- George J. Schreiber
Search author on:PubMed Google Scholar
- Ron M. Kerkhoven
Search author on:PubMed Google Scholar
- Chris Roberts
Search author on:PubMed Google Scholar
- Peter S. Linsley
Search author on:PubMed Google Scholar
- René Bernards
Search author on:PubMed Google Scholar
- Stephen H. Friend
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toStephen H. Friend.
Ethics declarations
Competing interests
S.H.F. is the Vice President of the MRC Merck Research Laboratories.
Supplementary information
Rights and permissions
About this article
Cite this article
van 't Veer, L., Dai, H., van de Vijver, M.et al. Gene expression profiling predicts clinical outcome of breast cancer.Nature415, 530–536 (2002). https://doi.org/10.1038/415530a
Received:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Clinically relevant gene signatures provide independent prognostic information in older breast cancer patients
- Miguel Castresana-Aguirre
- Annelie Johansson
- Nicholas P. Tobin
Breast Cancer Research (2024)
Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway
- Muhammad Tufail
- Jia-Ju Hu
- Ning Li
Journal of Translational Medicine (2024)
Identification of lineage-specific epigenetic regulators FOXA1 and GRHL2 through chromatin accessibility profiling in breast cancer cell lines
- Liying Yang
- Kohei Kumegawa
- Reo Maruyama
Cancer Gene Therapy (2024)
Development of an invasion score based on metastasis-related pathway activity profiles for identifying invasive molecular subtypes of lung adenocarcinoma
- Tao Han
- Yafeng Liu
- Dong Hu
Scientific Reports (2024)
Optimizing Gene Selection and Cancer Classification with Hybrid Sine Cosine and Cuckoo Search Algorithm
- Abrar Yaqoob
- Navneet Kumar Verma
- Rabia Musheer Aziz
Journal of Medical Systems (2024)


