- Article
- Published:
Crystal structure of the nucleosome core particle at 2.8 Å resolution
Naturevolume 389, pages251–260 (1997)Cite this article
74kAccesses
7177Citations
74Altmetric
Abstract
The X-ray crystal structure of the nucleosome core particle of chromatin shows in atomic detail how the histone protein octamer is assembled and how 146 base pairs of DNA are organized into a superhelix around it. Both histone/histone and histone/DNA interactions depend on the histone fold domains and additional, well ordered structure elements extending from this motif. Histone amino-terminal tails pass over and between the gyres of the DNA superhelix to contact neighbouring particles. The lack of uniformity between multiple histone/DNA-binding sites causes the DNA to deviate from ideal superhelix geometry.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Kornberg, R. D. Structure of chromatin.Annu. Rev. Biochem.46, 931–954 (1977).
McGhee, J. D. & Felsenfeld, G. Nucleosome structure.Annu. Rev. Biochem.49, 1115–1156 (1980).
Widom, J. Toward a unified model of chromatin folding.Annu. Rev. Biophys. Biophys. Chem.18, 365–395 (1989).
van Holde, K. E.Chromatin(Springer, New York, (1988).
Blank, T. A. & Becker, P. B. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing.J. Mol. Biol.260, 1–8 (1996).
Wallrath, L. L., Lu, Q., Granok, H. & Elgin, S. C. R. Architectural variations of inducible eukaryotic promoters: Preset and remodeling chromatin structures.BioEssays16, 165–170 (1994).
Flaus, A., Luger, K., Tan, S. & Richmond, T. J. Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals.Proc. Natl Acad. Sci. USA93, 1370–1375 (1996).
Travers, A. A. DNA bending and nucleosome positioning.Trends Biochem. Sci.12, 108–112 (1987).
Flaus, A. & Richmond, T. J. Positioning and stability of nucleosomes on MMTV 3′ LTR sequences.J. Mol. Biol.(in the press).
Wasylyk, B. & Chambon, P. Transcription by eukaryotic RNA polymerases A and B of chromatin assembledin vitro.Eur. J. Biochem.98, 317–327 (1979).
Grunstein, M. Histone function in transcription.Annu. Rev. Cell Biol.6, 643–678 (1990).
Paranjape, S. M., Kamakaka, R. T. & Kadonaga, J. T. Role of chromatin structure in the regulation of transcription by RNA polymerase II.Annu. Rev. Biochem.63, 265–297 (1994).
Polach, K. J. & Widom, J. Amodel for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites.J. Mol. Biol.258, 800–812 (1996).
Felsenfeld, G. Chromatin unfolds.Cell86, 13–19 (1996).
Schild, C., Claret, F. X., Wahli, W. & Wolffe, A. P. Anucleosome-dependent static loop potentiates estrogen-regulated transcription from theXenopus vitellogenin-B1 promoterin vitro.EMBO J.12, 423–433 (1993).
Truss, M.et al. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoterin vivo.EMBO J.14, 1737–1751 (1995).
Rhodes, D., Brown, R. S. & Klug, A.Meth. Enzymol. 420–428 (Academic, San Diego, (1989).
Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. Structure of the nucleosome core particle at 7 Å resolution.Nature311, 532–537 (1984).
Finch, J. T.et al. X-ray and electron microscope studies on the nucleosome structure.FEBS Lett.51, 193–197 (1979).
Arents, G., Burlingame, R. W., Wang, B.-C., Love, W. E. & Moudrianakis, E. N. The nucleosomal core histone octamer at 3.1 Å resolution: A tripartite protein assembly and a left-handed superhelix.Proc. Natl Acad. Sci. USA88, 10148–10152 (1991).
Richmond, T. J., Rechsteiner, T. & Luger, K. Studies of nucleosome structure.Cold Spring Harbor Symp. Quant. Biol.LVIII, 265–272 (1993).
Richmond, T. J., Searles, M. A. & Simpson, R. T. Crystals of a nucleosome core particle containing defined sequence DNA.J. Mol. Biol.199, 161–170 (1988).
Luger, K., Rechsteiner, T. J., Flaus, A., Waye, M. M. Y. & Richmond, T. J. Characterization of nucleosome core particles containing histone proteins made in bacteria.J. Mol. Biol.(in the press).
Camerini-Otero, R. D. & Felsenfeld, G. Sulfhydryl modificaiton of nucleosome.Proc. Natl Acad. Sci. USA74, 5519–5523 (1977).
Harp, J. M.et al. X-ray diffraction analysis of crystals containing twofold symmetric nucleosome core particles.Acta Crystallogr. D52, 283–288 (1996).
Satchwell, S. C., Drew, H. R. & Travers, A. A. Sequence periodicities in chicken nucleosome core DNA.J. Mol. Biol.191, 659–675 (1986).
Rhodes, D. & Klug, A. Sequence-dependent helical periodicity of DNA.Nature292, 378–380 (1981).
Dickerson, R. E., Goodsell, D. S. & Neidle, S. “⃛ The tyranny of the lattice⃛”.Proc. Natl Acad. Sci. USA91, 3579–3583 (1994).
Travers, A. A. & Klug, A. inDNA Topology and its Biological Effects(eds Cozzarelli, N. R.&Wang, J. C.) 57–106 (Cold Spring Harbor Press, Cold Spring Harbor, New York, (1990).
Pryciak, P. M. & Varmus, H. E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection.Cell69, 769–780 (1992).
Pruss, D., Bushmann, F. D. & Wolffe, A. P. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core.Proc. Natl Acad. Sci. USA91, 5913–5917 (1994).
Polach, K. J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation.J. Mol. Biol.254, 130–149 (1995).
Studitsky, V. M., Clark, D. J. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription.Cell83, 19–27 (1995).
Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure.Genes Dev.6, 2288–2298 (1992).
Kruger, W.et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription.Genes Dev.9, 2770–2779 (1995).
Finch, J. T. & Klug, A. Solenoidal model for superstructure in chromatin.Proc. Natl Acad. Sci. USA73, 1897–1901 (1976).
Thoma, F., Koller, T. & Klug, A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin.J. Cell Biol.83, 403–427 (1979).
Widom, J. & Klug, A. Structure of the 300 Å chromatin filament: X-ray diffraction from oriented samples.Cell43, 207–213 (1985).
Graziano, V., Gerchman, S. E., Schneider, D. K. & Ramakrishnan, V. Histone H1 is located in the interior of the chromatin 30-nm filament.Nature368, 351–354 (1994).
Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast.Cell80, 583–592 (1995).
Starich, M. R., Sandman, K., Reeve, J. N. & Summers, M. F. NMR structure of HMfB from the hyperthermophile,Methanothermus fervidus, confirms that this archaeal protein is a histone.J. Mol. Biol.255, 187–203 (1996).
Xie, X.et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer.Nature380, 316–322 (1996).
Yang, T. P., Hansen, S. K., Oishi, K. K., Ryder, O. A. & Hamkalo, B. A. Characterization of a cloned repetitive DNA sequence concentrated on the human X chromosome.Proc. Natl Acad. Sci. USA79, 6593–6597 (1982).
O'Halloran, T. V., Lippard, S. J., Richmond, T. J. & Klug, A. Multiple heavy-atom reagents for macromolecular X-ray structure determination. Application to the nucleosome core particle.J. Mol. Biol.194, 705–712 (1987).
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models.Acta Crystallogr. A47, 110–119 (1991).
Brünger, A.X-PLOR v3.1 Manual(Yale Univ. Press, New Haven, (1992).
Ferrin, T. E., Huang, C. C., Jarvis, L. E. & Langridge, R. The MIDAS display system.J. Mol. Graph.6, 13–27 (1988).
Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons.Proteins11, 281–296 (1991).
Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors.Acta Crystallogr. A42, 140–149 (1986).
Böhm, L. & Crane-Robinson, C. Proteases as structural probes for chromatin: the domain structure of histones.Biosci. Rep.4, 365–386 (1984).
Goldknopf, I. L. & Busch, H. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugated-protein A24.Proc. Natl Acad. Sci. USA74, 864–868 (1977).
Acknowledgements
We thank S. Halford for the EcoRV enzyme; A. Flaus, T. Rechsteiner and S. Tan for support and discussion; and C. Riekel and his co-workers at ID13 of the ESRF, Grenoble for support and cooperation. This research was supported in part by the Swiss National Fond.
Author information
Authors and Affiliations
Institut für Molekularbiologie und Biophysik ETHZ, ETH-Hönggerberg, CH-8093, Zürich, Switzerland
Karolin Luger, Armin W. Mäder, Robin K. Richmond, David F. Sargent & Timothy J. Richmond
- Karolin Luger
You can also search for this author inPubMed Google Scholar
- Armin W. Mäder
You can also search for this author inPubMed Google Scholar
- Robin K. Richmond
You can also search for this author inPubMed Google Scholar
- David F. Sargent
You can also search for this author inPubMed Google Scholar
- Timothy J. Richmond
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
Luger, K., Mäder, A., Richmond, R.et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution.Nature389, 251–260 (1997). https://doi.org/10.1038/38444
Received:
Accepted:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative