Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Large changes in oceanic nutrient inventories from glacial to interglacial periods

Naturevolume 376pages755–758 (1995)Cite this article

Abstract

CHANGES in ocean chemistry and circulation have been invoked to explain the lower atmospheric CO2 concentrations of glacial periods observed in ice-core records1. The processes that modulate these concentrations are not well understood, but an increase in the nutrient inventory of the ocean is one mechanism that could lower atmospheric CO2 levels by enhancing oceanic biological productivity and CO2 storage1-3. The oceanic concentrations of one such nutrient, nitrate, may be regulated by changes in the rate at which it is degraded by bacteria (denitrification) in oxygen-deficient subsurface waters. Denitrification constitutes a significant global sink for oceanic nitrate4, and the eastern tropical North Pacific Ocean is particularly important in this respect as it accounts for at least a third of global oceanic fixed-nitrogen removal by water-column denitrification4,5. Here we present15N/14N records from marine sediment cores, which show that water-column denitrification in the eastern tropical North Pacific Ocean was greatly diminished during glacial periods. We suggest that, because nitrate limits biological productivity in much of the modern ocean, a consequent increase in the oceanic nitrate inventory during glacial periods could have contributed to the observed decrease in atmospheric CO2 concentration.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Broecker, W. S.Geochim cosmochim. Acta46, 1689–1705 (1982).

    Article ADS CAS  Google Scholar 

  2. Berger, W. H. & Keir, R. S. inClimate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 337–351 (Geophys. Monogr. 29, Am. Geophys. Union, Washington DC, 1984).

    Book  Google Scholar 

  3. Boyle, E. A.Paleoceanography3, 471–489 (1988).

    Article ADS  Google Scholar 

  4. Codispoti, L. A. inProductivity of the Ocean: Present and Past (eds Berger, W. H., Smetacek, V. S. & Wefer, G.) 377–394 (Wiley, New York, 1989).

    Google Scholar 

  5. Codispoti, L. A. & Christensen, J. P.Mar. Chem.16, 277–300 (1985).

    Article CAS  Google Scholar 

  6. Christensen, J. P., Murray, J. W., Devol, A. H. & Codispoti, L. A.Global Biogeochem. Cycles1, 97–116 (1987).

    Article ADS CAS  Google Scholar 

  7. Altabet, M. A., Francois, R., Murray, D. W. & Prell, W. L.Nature373, 506–509 (1995).

    Article ADS CAS  Google Scholar 

  8. Altabet, M. A. & Francois, R.Globl biogeochem. Cycles8, 103–116 (1994).

    Article ADS CAS  Google Scholar 

  9. Liu, K. & Kaplan, I. R.Limnol. Oceanogr.34, 820–830 (1989).

    Article ADS CAS  Google Scholar 

  10. Codispoti, L. A. & Richards, R. A.Limnol. Oceanogr.21, 379–388 (1976).

    Article ADS CAS  Google Scholar 

  11. Cline, J. D. & Kaplan, I. R.Mar. Chem.3, 271–299 (1975).

    Article CAS  Google Scholar 

  12. Saino, T. & Hattori, A.Deep-Sea Res.34, 807–827 (1987).

    Article ADS CAS  Google Scholar 

  13. Pena, A., Lewis, M. R. & Cullen, J. J.J. geophys. Res.99, 14255–14268 (1994).

    Article ADS  Google Scholar 

  14. Dymond, J., Suess, E. & Lyle, M.Paleoceanography7, 163–182 (1992).

    Article ADS  Google Scholar 

  15. Brumsack, H. J. inNorth Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 447–462 (Geol. Soc. Spec. Publ. No. 21, Blackwell Scientific, Oxford, 1986).

    Google Scholar 

  16. Ganeshram, R. S., Pedersen, T. F. & Murray, J. W.Eos73, 309 (1992).

    Google Scholar 

  17. Garfield, P. C. Packard, T. T., Friederich, G. E. & Codispoti, L. A.J. mar. Res.41, 747–768 (1983).

    Article CAS  Google Scholar 

  18. Wyrtki, K.Int. J. Oceanol. Limnol.1, 117–147 (1967).

    Google Scholar 

  19. Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C.J. Plankton Res. (in the press).

  20. McElroy, M. B.Nature302, 328–329 (1983).

    Article ADS CAS  Google Scholar 

  21. Devol, A. H.Nature349, 319–321 (1991).

    Article ADS CAS  Google Scholar 

  22. Capone, D. G. & Carpenter, E. J.Science217, 1140–1142 (1982).

    Article ADS CAS  Google Scholar 

  23. Hay, W. W. & Southam, J. R. inThe Fate of Fossil Fuel CO2 in the Oceans (eds Andersen, N. R. & Malahoff, A.) 569–604 (Plenum, New York, 1977).

    Book  Google Scholar 

  24. Reimers, C. E.thesis, Oregon State Univ. (1981).

  25. Altabet, M. A. & Curry, W. B.Globl biogeochem. Cycles3, 107–119 (1989).

    Article ADS  Google Scholar 

  26. Fanning, K. A.J. geophys. Res.97, 5693–5712 (1992).

    Article ADS  Google Scholar 

  27. Kolber, Z. S.et al.Nature371, 145–149 (1994).

    Article ADS CAS  Google Scholar 

  28. Redfield, A. C., Ketchum, B. H. & Richards, F. A. inThe Sea (ed. Hill, M. N.) Vol.2 26–77 (Wiley, New York, 1963).

    Google Scholar 

  29. Keigwin, L. D. & Jones, G. A.J. geophys. Res.99, 12397–12410 (1994).

    Article ADS  Google Scholar 

  30. Martinson, D. G.et al.Quat. Res.27, 1–29 (1987).

    Article CAS  Google Scholar 

  31. Calvert, S. E. inFacets in Modern Biogeochemistry (eds Ittekkot, V., Kempe, S., Michaelis, W. & Spitzy, A.) 326–352 (Springer, Berlin, 1990).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Oceanography, University of British Columbia, Vancouver, Canada, V6T 1Z4

    Raja S. Ganeshram, Thomas F. Pedersen & Stephen E. Calvert

  2. School of Oceanography, University of Washington, Seattle, Washington, 98195, USA

    James W. Murray

Authors
  1. Raja S. Ganeshram

    You can also search for this author inPubMed Google Scholar

  2. Thomas F. Pedersen

    You can also search for this author inPubMed Google Scholar

  3. Stephen E. Calvert

    You can also search for this author inPubMed Google Scholar

  4. James W. Murray

    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Ganeshram, R., Pedersen, T., Calvert, S.et al. Large changes in oceanic nutrient inventories from glacial to interglacial periods.Nature376, 755–758 (1995). https://doi.org/10.1038/376755a0

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp