- Letter
- Published:
Effects of boreal forest vegetation on global climate
Naturevolume 359, pages716–718 (1992)Cite this article
7324Accesses
870Citations
42Altmetric
Abstract
TERRESTRIAL ecosystems are thought to play an important role in determining regional and global climate1–6; one example of this is in Amazonia, where destruction of the tropical rainforest leads to warmer and drier conditions4–6. Boreal forest ecosystems may also affect climate. As temperatures rise, the amount of continental and oceanic snow and ice is reduced, so the land and ocean surfaces absorb greater amounts of solar radiation, reinforcing the warming in a 'snow/ice/albedo' feedback which results in large climate sensitivity to radiative forcings7–9. This sensitivity is moderated, however, by the presence of trees in northern latitudes, which mask the high reflectance of snow10,11, leading to warmer winter temperatures than if trees were not present12–14. Here we present results from a global climate model which show that the boreal forest warms both winter and summer air temperatures, relative to simulations in which the forest is replaced with bare ground or tundra vegetation. Our results suggest that future redistributions of boreal forest and tundra vegetation (due, for example, to extensive logging, or the influence of global warming) could initiate important climate feedbacks, which could also extend to lower latitudes.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Wilson, M. F., Henderson-Sellers, A., Dickinson, R. E. & Kennedy, P. J.J. Climatol.7, 319–343 (1987).
Sato, N.et al.J. atmos. Sci.46, 2757–2782 (1989).
Sud, Y. C.et al.Agric. For. Meteorol.52, 133–180 (1990).
Dickinson, R. E. & Henderson-Sellers, A.Q. Jl R. met. Soc.114, 439–462 (1988).
Shukla, J., Nobre, C. & Sellers, P.Science247, 1322–1325 (1990).
Nobre, C. A., Sellers, P. J. & Shukla, J.J. Clim.4, 957–988 (1991).
Dickinson, R. E., Meehl, G. A. & Washington, W. M.Climatic Change10, 241–248 (1987).
Ingram, W. J., Wilson, C. A. & Mitchell, J. F. B.J. geophys. Res.94, 8609–8622 (1989).
Meehl, G. A. & Washington, W. M.Climatic Change16, 283–306 (1990).
Federer, C. A.J. appl. Met.7, 789–795 (1968).
Robinson, D. A. & Kukla, G.J. Clim. appl. Met.23, 1626–1634 (1984);24, 402–411 (1985).
Otterman, J., Chou, M.-D. & Arking, A.J. Clim. appl. Met.23, 762–767 (1984).
Harvey, L. D. D.Climatic Change13, 191–224 (1988).
Thomas, G. & Rowntree, P. R.Q. Jl R. met. Soc.118, 469–497 (1992).
Pollard, D. & Thompson, S. L.Description of a Land-Surface-Transfer Model (LSX) as Part of a Global Climate Model, NCAR Tech. Note (Natn, Center Atmos. Res., Boulder Colorado, 1992).
Williamson, D. L., Kiehl, J. T., Ramanathan, V., Dickinson, R. E. & Hack, J. J.Description of NCAR Community Climate Model (CCM1) NCAR Tech. Note. TN-285+STR (Natn. Center Atmos. Res., Boulder Colorado, 1987).
Slingo, A. & Slingo, J. M.J. geophys. Res.96, 15341–15357 (1991).
Thompson, S. L., Ramaswamy, V. & Covey, C.J. geophys. Res.92, 10942–10960 (1987).
Williamson, D. L. & Rasch, P. J.Mon. Weath. Rev.117, 102–129 (1989).
Rasch, P. J. & Williamson, D. L.Q. Jl Met. Soc.116, 1071–1090 (1990).
Williamson, D. L.Tellus A42, 413–428 (1990).
Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J. & Wilson, M. F.Biosphere–Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model NCAR Tech. TN-275+STR (Natn. Center Atmos. Res., Boulder Colorado, 1986).
Sellers, P. J., Mintz, Y., Sud, Y. C. & Dalcher, A.J. atmos. Sci.43, 505–531 (1986).
Covey, C. & Thompson, S. L.Palaeogeogr Palaeoclimatol Palaeoecol.75, 331–341 (1989).
Dorman, J. L. & Sellers, P. J.J. appl. Met.28, 833–855 (1989).
Olson, J. S., Watts, J. A. & Allison, L. J.Carbon in Live Vegetation of Major World Ecosystems, ORNL-5862 (Oak Ridge Natn Lab., Oak Ridge Tennessee, 1983).
Rosencranz, A. & Scott, A.Nature355, 293–294 (1992).
Alexander, R. C. & Mobley, R. L.,Mon. Weath. Rev.104, 143–148 (1976).
Lashof, D. A.Climatic Change14, 213–242 (1989).
D'Arrigo, R., Jacoby, G. C. & Fung, I. Y.Nature329, 321–323 (1987).
Bonan, G. B.Tellus B44, 173–185 (1992).
Bonan, G. B.J. geophys. Res.96, 7301–7312 (1991); 17329–17338 (1991).
Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.Climate Change: The IPCC Scientific Assessment (Cambridge Univ, Press, Cambridge, 1990).
Post, W. M.Report of a Workshop on Climate Feedbacks and the Role of Peatlands, Tundra, and Boreal Ecosystems in the Global Carbon Cycle, ORNL/TM-11457 (Oak Ridge Natn Lab., Oak Ridge Tennessee, 1990).
Bryson, R. A.Geogr. Bull.8, 228–269 (1966).
Larsen, J. A.The Boreal Ecosystem (Academic, New York, 1980).
Tuhkanen, S.Acta bot. Fennica127, 1–50 (1984).
Oechel, W. C. & Lawrence, W. T. inPhysiological Ecology of North American Plant Communities (eds Chabot, B. F. & Mooney, H. A.) 66–94 (Chapman & Hall, New York, 1985).
Elliot-Fisk, D. L. inNorth American Terrestrial Vegetation (eds Barbour, M. G, & Billings, W. D.) 33–62 (Cambridge Univ. Press, Cambridge, 1988).
Ritchie, J. C.Postglacial Vegetation of Canada (Cambridge Univ. Press, Cambridge, 1987).
Webb, T. III inVegetation History (eds Huntley, B. & Webb, T. III) 385–414 (Kluwer, Boston, 1988).
Sirois, L. inA Systems Analysis of the Global Boreal Forest (eds Shugart, H. H., Leemans, R. & Bonan, G. B.) 196–215 (Cambridge Univ. Press, Cambridge, 1992).
Emanual, W. R., Shugart, H. H. & Stevenson, M. P.Climatic Change7, 29–43 (1985).
Pastor, J. & Post, W. M.Nature334, 55–58 (1988).
Smith, T. M., Shugart, H. H., Bonan, G. B. & Smith, J. B.Adv. Ecol. Res.22, 93–116 (1992).
Smith, T. M., Leemans, R. & Shugart, H. H.Climatic Change21, 367–394 (1992).
Author information
Authors and Affiliations
National Center for Atmospheric Research, PO Box 3000, Boulder, Colorado, 80307-3000, USA
Gordon B. Bonan, David Pollard & Starley L. Thompson
- Gordon B. Bonan
Search author on:PubMed Google Scholar
- David Pollard
Search author on:PubMed Google Scholar
- Starley L. Thompson
Search author on:PubMed Google Scholar
Rights and permissions
About this article
Cite this article
Bonan, G., Pollard, D. & Thompson, S. Effects of boreal forest vegetation on global climate.Nature359, 716–718 (1992). https://doi.org/10.1038/359716a0
Received:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Siberian vegetation growth intensifies monsoon precipitation in southern East Asia in late spring and early summer
- Sang-Wook Yeh
- Byung-Ju Sohn
- Young-Min Yang
npj Climate and Atmospheric Science (2024)
Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands
- Ning Chen
- Yifei Zhang
- Xianwei Wang
Nature Communications (2023)
Competing effects of vegetation on summer temperature in North Korea
- Jieun Oh
- Eungul Lee
Theoretical and Applied Climatology (2023)
Crowd-sourced data link land use and soil moisture to temperature and relative humidity in southwest Michigan (USA)
- Ellen Audia
- M. Megan Woller-Skar
- Alexandra Locher
Theoretical and Applied Climatology (2021)
Uncertainties in above ground tree biomass estimation
- Lihou Qin
- Shengwang Meng
- Zhenzhao Xu
Journal of Forestry Research (2021)


