Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Genetics
  • Opinion
  • Published:

Do bacteria have sex?

Nature Reviews Geneticsvolume 2pages634–639 (2001)Cite this article

Abstract

Do bacteria have genes for genetic exchange? The idea that the bacterial processes that cause genetic exchange exist because of natural selection for this process is shared by almost all microbiologists and population geneticists. However, this assumption has been perpetuated by generations of biology, microbiology and genetics textbooks without ever being critically examined.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic exchange in bacteria.
Figure 2: The role of RuvC in DNA replication and recombination.
Figure 3: Methods of DNA transfer.

Similar content being viewed by others

References

  1. Kondrashov, A. S. Classification of hypotheses on the advantage of amphimixis.J. Hered.84, 372–387 (1993).

    Article CAS PubMed  Google Scholar 

  2. Lenormand, T. & Otto, S. P. The evolution of recombination in a heterogeneous environment.Genetics156, 423–438 (2000).

    CAS PubMed PubMed Central  Google Scholar 

  3. Keightley, P. D. & Eyre-Walker, A. Deleterious mutations and the evolution of sex.Science290, 331–333 (2000).

    Article CAS PubMed  Google Scholar 

  4. Lawrence, J. G. & Ochman, H. Molecular archaeology of theEscherichia coli genome.Proc. Natl Acad. Sci. USA95, 9413–9417 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  5. Burt, A. Perspective: sex, recombination, and the efficacy of selection — was Weismann right?Evolution54, 337–351 (2000).

    CAS PubMed  Google Scholar 

  6. West, S. A., Lively, C. M. & Read, A. F. A pluralist approach to sex and recombination.J. Evol. Biol.12, 1003–1012 (1999).

    Article  Google Scholar 

  7. Papadopoulos, D. et al. Genomic evolution during a 10,000-generation experiment with bacteria.Proc. Natl Acad. Sci. USA96, 3807–3812 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  8. Redfield, R. J. Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all?Genetics119, 213–221 (1988).

    CAS PubMed PubMed Central  Google Scholar 

  9. Redfield, R., Schrag, M. & Dean, A. The evolution of bacterial transformation: sex with poor relations.Genetics146, 27–38 (1997).

    CAS PubMed PubMed Central  Google Scholar 

  10. Tenaillon, O., Le Nagard, H., Godelle, B. & Taddei, F. Mutators and sex in bacteria: conflict between adaptive strategies.Proc. Natl Acad. Sci. USA97, 10465–10470 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  11. Souza, V., Turner, P. E. & Lenski, R. E. Long-term experimental evolution inEscherichia coli. 5. Effects of recombination with immigrant genotypes on the rate of bacterial evolution.J. Evol. Biol.10, 743–769 (1997).

    Article  Google Scholar 

  12. Cox, M. M. Recombinational DNA repair in bacteria and the RecA protein.Prog. Nucleic Acid Res. Mol. Biol.63, 311–366 (1999).

    Article CAS PubMed  Google Scholar 

  13. Cox, M. M. et al. The importance of repairing stalled replication forks.Nature404, 37–41 (2000).

    Article CAS PubMed  Google Scholar 

  14. Kuzminov, A. Collapse and repair of replication forks inEscherichia coli.Mol. Microbiol.16, 373–384 (1995).

    Article CAS PubMed  Google Scholar 

  15. Vincent, S. D., Mahdi, A. A. & Lloyd, R. G. The RecG branch migration protein ofEscherichia coli dissociates R-loops.J. Mol. Biol.264, 713–721 (1996).

    Article CAS PubMed  Google Scholar 

  16. Seigneur, M., Bidnenko, V., Ehrlich, S. D. & Michel, B. RuvAB acts at arrested replication forks.Cell95, 419–430 (1998).

    Article CAS PubMed  Google Scholar 

  17. Lloyd, R. G. Conjugational recombination in resolvase-deficientruvC mutants ofEscherichia coli K-12 depends onrecG.J. Bacteriol.173, 5414–5418 (1991).

    Article CAS PubMed PubMed Central  Google Scholar 

  18. Milkman, R. et al. Molecular evolution of theEscherichia coli chromosome V. Recombination patterns among strains of diverse origin.Genetics153, 539–554 (1999).

    CAS PubMed PubMed Central  Google Scholar 

  19. Sternberg, N. L. & Maurer, R. Bacteriophage-mediated generalized transduction inEscherichia coli andSalmonella typhimurium.Methods Enzymol.204, 18–43 (1991).

    Article CAS PubMed  Google Scholar 

  20. Vogel, W. & Schmieger, H. Selection of bacterialpac sites recognized bySalmonella phage P22.Mol. Gen. Genet.205, 563–567 (1986).

    Article CAS PubMed  Google Scholar 

  21. Frost, L. S. Bacterial conjugation: everybody's doin' it.Can. J. Microbiol.38, 1091–1096 (1992).

    Article CAS PubMed  Google Scholar 

  22. Solomon, J. M. & Grossman, A. D. Who's competent when: regulation of natural genetic competence in bacteria.Trends Genet.12, 150–155 (1996).

    Article CAS PubMed  Google Scholar 

  23. Dubnau, D. DNA uptake in bacteria.Annu. Rev. Microbiol.53, 217–244 (1999).

    Article CAS PubMed  Google Scholar 

  24. Levin, B. R. & Bergstrom, C. T. Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes.Proc. Natl Acad. Sci. USA97, 6981–6985 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Mortier-Barriere, I., Humbert, O., Martin, B., Prudhomme, M. & Claverys, J. P. Control of recombination rate during transformation ofStreptococcus pneumoniae: an overview.Microb. Drug Resist.3, 233–242 (1997).

    Article CAS PubMed  Google Scholar 

  26. Michod, R. E., Wojciechowski, M. & Hoelzer, M. DNA repair and the evolution of transformation in the bacteriumBacillus subtilis.Genetics118, 31–39 (1988).

    CAS PubMed PubMed Central  Google Scholar 

  27. Wojciechowski, M. F., Hoelzer, M. A. & Michod, R. E. DNA repair and the evolution of transformation inBacillus subtilis. II. Role of inducible repair.Genetics121, 411–422 (1989).

    CAS PubMed PubMed Central  Google Scholar 

  28. Hoelzer, M. A. & Michod, R. E. DNA repair and the evolution of transformation inBacillus subtilis. III. Sex with damaged DNA.Genetics128, 215–223 (1991).

    CAS PubMed PubMed Central  Google Scholar 

  29. Redfield, R. J. Evolution of natural transformation: testing the DNA repair hypothesis inBacillus subtilis andHaemophilus influenzae.Genetics133, 755–761 (1993).

    CAS PubMed PubMed Central  Google Scholar 

  30. Redfield, R. J. Genes for breakfast: the have your cake and eat it too of transformation.J. Hered.84, 400–404 (1993).

    Article CAS PubMed  Google Scholar 

  31. Stouthamer, A. H. The search for correlation between theoretical and experimental growth yields.Int. Rev. Biochem.21, 1–47 (1979).

    CAS  Google Scholar 

  32. Matthews, L., Spector, S., Lemm, J. & Potter, J. Studies on pulmonary secretions. 1. The overall chemical composition of pulmonary secretions from patients with cystic fibrosis, bronchiectasis and laryngectomy.Am. Rev. Respir. Dis.88, 199–204 (1963).

    CAS PubMed  Google Scholar 

  33. Hunt, J. N., Smith, J. L., Jiang, C. & Kessler, M. S. Effect of synthetic prostaglandin E1 analog on aspirin-induced gastric bleeding and secretion.Dig. Dis. Sci.28, 897–902 (1983).

    Article CAS PubMed  Google Scholar 

  34. Blum, S. A. E., Lorenz, M. G. & Wackernagel, W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils.Syst. Appl. Microbiol.20, 513–521 (1997).

    Article CAS  Google Scholar 

  35. Pifer, M. L. & Smith, H. O. Processing of donor DNA duringHaemophilus influenzae transformation: analysis using a model plasmid system.Proc. Natl Acad. Sci. USA82, 3731–3735 (1985).

    Article CAS PubMed PubMed Central  Google Scholar 

  36. Dorocicz, I., Williams, P. & Redfield, R. J. TheHaemophilus influenzae adenylate cyclase gene: cloning, sequence and essential role in competence.J. Bacteriol.175, 7142–7149 (1993).

    Article CAS PubMed PubMed Central  Google Scholar 

  37. Macfadyen, L. P., Dorocicz, I. R., Reizer, J., Saier, M. H. Jr & Redfield, R. J. Regulation of competence development and sugar utilization inHaemophilus influenzae Rd by a phosphoenolpyruvate:fructose phosphotransferase system.Mol. Microbiol.21, 941–952 (1996).

    Article CAS PubMed  Google Scholar 

  38. Macfadyen, L. P.Regulation of Intracellular cAMP Levels and Competence Development in Haemophilus influenzaeby a Phosphoenolpyruvate:Fructose Phosphotransferase System. Ph.D. thesis, Department of Zoology, University of British Columbia, British Columbia, Canada (1999).

    Google Scholar 

  39. Macfadyen, L. P. et al. Competence development byHaemophilus influenzae is regulated by the availability of nucleic acid precursors.Mol. Microbiol.40, 700–707 (2001).

    Article CAS PubMed  Google Scholar 

  40. Hauser, P. M. & Karamata, D. A rapid and simple method forBacillus subtilis transformation on solid media.Microbiology140, 1613–1617 (1994).

    Article CAS PubMed  Google Scholar 

  41. Serror, P. & Sonenshein, A. L. CodY is required for nutritional repression ofBacillus subtilis genetic competence.J. Bacteriol.178, 5910–5915 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Frisby, D. & Zuber, P. Mutations inpts cause catabolite-resistant sporulation and altered regulation of spo0H inBacillus subtilis.J. Bacteriol.176, 2587–2595 (1994).

    Article CAS PubMed PubMed Central  Google Scholar 

  43. Kunst, F., Msadek, T., Bignon, J. & Rapoport, G. The DegS/DegU and ComP/ComA two-component systems are part of a network controlling degradative enzyme synthesis and competence inBacillus subtilis.Res. Microbiol.145, 393–402 (1994).

    Article CAS PubMed  Google Scholar 

  44. Inamine, G. S. & Dubnau, D. ComEA, aBacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport.J. Bacteriol.177, 3045–3051 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  45. Porstendorfer, D., Gohl, O., Mayer, F. & Averhoff, B. ComP, a pilin-like protein essential for natural competence inAcinetobacter sp. strain BD413: regulation, modification, and cellular localization.J. Bacteriol.182, 3673–3680 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Tortosa, P. & Dubnau, D. Competence for transformation: a matter of taste.Curr. Opin. Microbiol.2, 588–592 (1999).

    Article CAS PubMed  Google Scholar 

  47. Morrison, D. A. & Lee, M. S. Regulation of competence for genetic transformation inStreptococcus pneumoniae: a link between quorum sensing and DNA processing genes.Res. Microbiol.151, 445–451 (2000).

    Article CAS PubMed  Google Scholar 

  48. Swift, S., Throup, J. P., Williams, P., Salmond, G. P. & Stewart, G. S. Quorum sensing: a population-density component in the determination of bacterial phenotype.Trends Biochem. Sci.21, 214–219 (1996).

    Article CAS PubMed  Google Scholar 

  49. Macfadyen, L. P. Regulation of competence development inHaemophilus influenzae.J. Theor. Biol.207, 349–359 (2000).

    Article CAS PubMed  Google Scholar 

  50. Rimini, R. et al. Global analysis of transcription kinetics during competence development inStreptococcus pneumoniae using high density DNA arrays.Mol. Microbiol.36, 1279–1292 (2000).

    Article CAS PubMed  Google Scholar 

  51. Lang, A. S. & Beatty, J. T. Genetic analysis of a bacterial genetic exchange element: the gene transfer agent ofRhodobacter capsulatus.Proc. Natl Acad. Sci. USA97, 859–864 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  52. Lang, A. S. & Beatty, J. T. The gene transfer agent ofRhodobacter capsulatus and 'constitutive transduction' in prokaryotes.Arch. Microbiol.175, 241–249 (2001).

    Article CAS PubMed  Google Scholar 

  53. Horiuchi, T. & Fujimura, Y. Recombinational rescue of the stalled DNA replication fork: a model based on analysis of anEscherichia coli strain with a chromosome region difficult to replicate.J. Bacteriol.177, 783–791 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  54. Weismann, A.Die Bedeutung der sexuellen Fortpflanzung fur die Selektiontheorie (Gustav Fischer, Jena, 1886).

    Google Scholar 

  55. Redfield, R. J. A truly pluralistic view of sex and recombination.J. Evol. Biol.12, 1043–1046 (1999).

    Article  Google Scholar 

  56. Drake, J. W. The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes.Ann. NY Acad. Sci.870, 100–107 (1999).

    Article CAS PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Zoology, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada

    Rosemary J. Redfield

Authors
  1. Rosemary J. Redfield

Glossary

CATABOLITE REPRESSION

Transcriptional repression of a prokaryotic operon by the metabolic products of the enzymes that are encoded by the operon.

CONJUGATION

In prokaryotes, transfer of DNA from a donor cell to a recipient cell is mediated by direct cell–cell contact.

CONSPECIFICS

Members of the same species.

FITNESS

A measure of the capacity of an organism to survive and reproduce.

HOLLIDAY JUNCTIONS

Cross-shaped junctions at which four strands of DNA meet and exchange partners, an important intermediate of recombination.

HORIZONTAL TRANSFER

Acquisition of genetic information from another cell.

OPERON

A genetic unit or cluster that consists of one or more genes that are transcribed as a unit and are expressed in a coordinated manner.

PROPHAGE

An inactive bacteriophage genome integrated into the host genome.

PROTISTS

Single-celled eukaryotes.

QUORUM-SENSING PEPTIDES

Peptides secreted and detected by cells. Cells respond to extracellular peptide only when cell densities are sufficiently high (the 'quorum state') that the extracellular concentration of the peptide exceeds a threshold.

REC PROTEINS

A general class of protein that participates in recombination.

RECOMBINATIONAL REPAIR

DNA repair made possible when a damaged DNA strand base-pairs with a complementary undamaged strand from a different molecule.

RUV PROTEINS

Proteins that translocate and resolve Holliday junctions.

TRANSDUCTION

Virus- or phage-mediated introduction into a cell of a DNA fragment derived from a different cell.

TRANSFORMATION

Change of the genotype of a cell brought about by uptake of free DNA.

TRANSPOSASE

An enzyme that carries out the site-specific DNA recombination required for transposition.

Rights and permissions

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp