- Review Article
- Published:
Weather and climate on Mars
Naturevolume 412, pages245–249 (2001)Cite this article
4397Accesses
159Citations
3Altmetric
Abstract
Imagine a planet very much like the Earth, with similar size, rotation rate and inclination of rotation axis, possessing an atmosphere and a solid surface, but lacking oceans and dense clouds of liquid water. We might expect such a desert planet to be dominated by large variations in day–night and winter–summer weather. Dust storms would be common. Observations and simulations of martian climate confirm these expectations and provide a wealth of detail that can help resolve problems of climate evolution.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Zurek, R. et al. inMars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 835–933 (Univ. Arizona Press, Tucson, 1992).
James, P., Kieffer, H. & Paige, D. inMars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 934–968 (Univ. Arizona Press, Tucson, 1992).
Gierasch, P. & Goody, R. The effect of dust on the temperature of the Mars atmosphere.J. Atmos. Sci.29, 400–402 (1972).
Kahn, R., Martin, T., Zurek, R. & Lee, S. inMars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 1017–1053 (Univ. Arizona Press, Tucson, 1992).
Seiff, A. & Kirk, D. Structure of the atmosphere of Mars in summer at mid-latitudes.J. Geophys. Res.82, 4364–4378 (1977).
Schofield, J. et al. The Mars Pathfinder Atmospheric Structure Investigation/Meterology (ASI/MET) experiment.Science278, 1752–1758 (1997).
Martin, T. & Kieffer, H. Thermal infrared measurements of the martian atmosphere 2. The 15 μm band measurements.J. Geophys. Res.84, 2843–2852 (1979).
Wilson, R. & Richardson, M. The martian atmosphere during the Viking mission: infrared measurements of atmospheric temperatures revisited.Icarus145, 555–579 (2000).
Smith, M. et al. TES observations of atmospheric thermal structure and aerosol distribution during MGS mapping.J. Geophys. Res.106 (in the press).
Clancy, R. et al. An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere.J. Geophys. Res.105, 9553–9571 (2000).
Hinson, D. et al. Initial results from radio occultation measurements with Mars Global Surveyor.J. Geophys. Res.104, 26997–27012 (1999).
Tillman, J., Johnson, N., Guttorp, P. & Percival, D. The martian annual pressure cycle: years without great dust storms.J. Geophys. Res.98, 10963–10971 (1993).
Lewis, S. et al. A climate database for Mars.J. Geophys. Res.104, 24177–24194 (1999).
Haberle, R. et al. Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model, 1. The zonal-mean circulation.J. Geophys. Res.102, 13301–13311 (1993).
Wilson, J. & Hamilton, K. Comprehensive model simulation of thermal tides in the martian atmosphere.J. Atmos. Sci.53, 1290–1326 (1996).
Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km.J. Geophys. Res.104, 24156–24175 (1999).
Mintz, Y. inThe Atmospheres of Mars and Venus (eds Kellogg, W. & Sagan, C.) NAS-NRC Publication 944, 107–146 (National Research Council, Washington DC, 1961).
Santee, M. & Crisp, D. Thermal structure and dust loading of the martian atmosphere during late summer: Mariner 9 revisited.J. Geophys. Res.98, 3261–3279 (1993).
Hartmann, D.Global Physical Climatology 140–143 (Academic, San Diego, 1994).
Conrath, B. et al. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: atmospheric temperatures during aerobraking and science phasing.J. Geophys. Res.104, 9509–9519 (1999).
Thomas, P., Veverka, J., Gineris, D. & Wong, L. “Dust” streaks on Mars.Icarus49, 398–415 (1984).
Greeley, R., Skypeck, A. & Pollack, J. Martian aeolian features and deposits: comparisons with general circulation model results.J. Geophys. Res.98, 3183–3196 (1993).
Barnes, J. Midlatitude disturbances in the Martian atmosphere: a second Mars year.J. Atmos. Sci.38, 225–234 (1981).
Barnes, J. Linear baroclinic instability in the Martian atmosphere.J. Atmos. Sci.41, 1536–1550 (1984).
Hollingsworth, J. et al. Orographic control of storm zones on Mars.Nature380, 413–416 (1996).
Gierasch, P., Thomas, P., French, R. & Veverka, J. Spiral clouds on Mars: a new atmospheric phenomenon.Geophys. Res. Lett.6, 405–408 (1979).
James, P., Hollingsworth, J., Wolff, J. & Lee, S. North polar dust storms in early spring on Mars.Icarus38, 64–73 (1999).
Conrath, B. Planetary-wave structure in the Martian atmosphere.Icarus48, 246–255 (1981).
Hollingsworth, J. & Barnes, J. Forced stationary planetary waves in Mars's winter atmosphere.J. Atmos. Sci.53, 428–448 (1996).
Briggs, G. & Leovy, C. Mariner 9 observations of the Mars north polar hood.Bull. Am. Meteorol. Soc.55, 278–296 (1972).
Zurek, R. Diurnal tide in the martian atmosphere.J. Atmos. Sci.33, 321–337 (1976).
Zurek, R. & Leovy, C. Thermal tides in the dusty Martian atmosphere: a verification of theory.Science213, 437–439 (1981).
Hinson, D., Hollingsworth, J., Wilson, R. & Tyler, G. Radio occultation measurements of forced atmospheric waves on Mars.J. Geophys. Res.106 (in the press).
Tillman, J. Mars global atmospheric oscillations: annually synchronized, transient normal mode oscillations and the triggering of global dust storms.J. Geophys. Res.93, 9433–9451 (1988).
Keating, G. et al. Evidence for large global diurnal Kelvin wave in the Mars upper atmosphere.Bull. Am. Astron. Soc.32, Abstr. 50:02 (2000).
Zurek, R. & Haberle, R. Zonally symmetric response to atmospheric tidal forcing in the dusty Martian atmosphere.J. Atmos. Sci.45, 2469–2485 (1988).
Murphy, J., Leovy, C. & Tillman, J. Observations of martian surface winds at the Viking Lander 1 site.J. Geophys. Res.95, 14555–14576 (1990).
Joshi, M., Lewis, S., Read, P. & Catling, D. Western boundary currents in the atmosphere of Mars.Nature367, 548–551 (1994).
Greeley, R., Lancaster, N., Lee, S. & Thomas, P. inMars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 835–933 (Univ. Arizona Press, Tucson, 1992).
Ryan, J., Sharman, R. & Lucich, R. Local Mars dust storm generation mechanism.Geophys. Res. Lett.8, 899–901 (1981).
Arvidson, R. et al. Three Mars years: Viking lander imaging observations.Science222, 463–468 (1983).
Peterfreund, A. & Kieffer, H. Thermal and infrared properties of the martian atmosphere. 3: Local dust clouds.J. Geophys. Res.84, 2853–2862 (1979).
Cantor, B., James, P., Caplinger, M. & Wolff, M. Martian dust storms: 1999 Mars Orbiter Camera observations.J. Geophys. Res.106 (in the press).
Ryan, J. & Carroll, J. Dust devil wind velocities: mature state.J. Geophys. Res.75, 531–541 (1970).
Thomas, P. & Gierasch, P. Dust devils on Mars.Science230, 175–177 (1985).
Leovy, C., Zurek, R. & Pollack, J. Mechanisms of Mars dust storms.J. Atmos. Sci.30, 749–762 (1973).
Leovy, C., Tillman, J., Guest, W. & Barnes, J. inRecent Advances in Planetary Meteorology (ed G. Hunt) 69–84 (Cambridge Univ. Press, Cambridge, 1985).
Anderson, E. & Leovy, C. Mariner 9 television limb observations of dust and ice hazes on Mars.J. Atmos. Sci.35, 723–234 (1978).
Smith, M., Pearl, J., Conrath, B. & Christensen, P. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing.J. Geophys. Res.105, 9539–9552 (2000).
Murphy, J. et al. Three-dimensional numerical simulation of Martian global dust storms.J. Geophys. Res.100, 26357–26376 (1995).
Zurek, R. & Martin, L. Interannual variability of planet-encircling dust storms on Mars.J. Geophys. Res.98, 3247–3259 (1993).
Haberle, R. Interannual variability of global dust storms on Mars.Science234, 459–461 (1986).
Anderson, F. et al. Assessing the Martian surface distribution of aeolian sand using a Mars general circulation model.J. Geophys. Res.104, 18991–19002 (1999).
Author information
Authors and Affiliations
Department of Atmospheric Sciences, Box 351640, University of Washington, Seattle, 98195, Washington, USA
Conway Leovy
- Conway Leovy
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toConway Leovy.
Rights and permissions
About this article
Cite this article
Leovy, C. Weather and climate on Mars.Nature412, 245–249 (2001). https://doi.org/10.1038/35084192
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Intelligent Recognition Using Ultralight Multifunctional Nano-Layered Carbon Aerogel Sensors with Human-Like Tactile Perception
- Huiqi Zhao
- Yizheng Zhang
- Ya Yang
Nano-Micro Letters (2024)
Martian dunes indicative of wind regime shift in line with end of ice age
- Jianjun Liu
- Xiaoguang Qin
- Chunlai Li
Nature (2023)
Mars weather data analysis using machine learning techniques
- Ishaani Priyadarshini
- Vikram Puri
Earth Science Informatics (2021)
Low-density multi-fan wind tunnel design and testing for the Ingenuity Mars Helicopter
- Marcel Veismann
- Christopher Dougherty
- Morteza Gharib
Experiments in Fluids (2021)
Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms
- Zhaopeng Wu
- Tao Li
- Jun Cui
Nature Communications (2020)


