- Review Article
- Published:
Mars' volatile and climate history
Naturevolume 412, pages237–244 (2001)Cite this article
4638Accesses
436Citations
20Altmetric
Abstract
There is substantial evidence that the martian volatile inventory and climate have changed markedly throughout the planet's history. Clues come from areas as disparate as the history and properties of the deep interior, the composition of the crust and regolith, the morphology of the surface, composition of the present-day atmosphere, and the nature of the interactions between the upper atmosphere and the solar wind. We piece together the relevant observations into a coherent view of the evolution of the martian climate, focusing in particular on the observations that provide the strongest constraints.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Owen, T. inMars (eds Kieffer, H. H., Jakosky, B. M., Snyder C. W. & Matthews, M. S.) 818–834 (Univ. Arizona Press, Tucson, 1992).
Jakosky, B. M. & Haberle, R. M. inMars (eds Kieffer, H. H., Jakosky, B. M., Snyder C. W. & Matthews, M. S.) 969–1016 (Univ. Arizona Press, Tucson, 1992).
Brass, G. W. Stability of brines on Mars.Icarus42, 20–28 (1980).
Kieffer, H. H. & Zent, A. P. inMars (eds Kieffer, H. H., Jakosky, B. M., Snyder C. W. & Matthews, M. S.) 1180–1218 (Univ. Arizona Press, Tucson, 1992).
Ward, W. R. Climatic variations on Mars. I. Astronomical theory of insolation.J. Geophys. Res.79, 3375–3386 (1974).
Touma, J. & Wisdom, J. The chaotic obliquity of Mars.Science259, 1294–1297 (1993).
Jakosky, B. M., Henderson, B. G. & Mellon, M. T. Chaotic obliquity and the nature of the martian climate.J. Geophys. Res.100, 1579–1584 (1995).
Hartmann, W. K. et al. inBasaltic Volcanism on the Terrestrial Planets (eds Basaltic Volcanism Study Project) 1049–1127 (Pergamon, New York, 1981).
Tanaka, K. L. The stratigraphy of Mars.J. Geophys. Res.91, E139–E158 (1986).
Hartmann, W. K. & Berman, D. C. Elysium Planitia lava flows: crater count chronology and geological implications.J. Geophys. Res.105, 15011–15025 (2000).
Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars.Space Sci. Rev. (in the press).
Pepin, R. O. Evolution of the martian atmosphere.Icarus111, 289–304 (1994).
Carr, M. H. & Clow, G. D. Martian channels and valleys: their characteristics, distribution, and age.Icarus48, 91–117 (1981).
Carr, M. H. & Malin, M. C. Meter-scale characteristics of martian channels and valleys.Icarus146, 366–386 (2000).
Carr, M. H. & Chuang, F. C. Martian drainage densities.J. Geophys. Res.102, 9145–9152 (1997).
Tanaka, K. L., Dohm, J. M., Lias, J. H. & Hare, T. M. Erosional valleys in the Thaumasia region of Mars: hydrothermal and seismic origins.J. Geophys. Res.103, 31407–31419 (1998).
Carr, M. H.Water on Mars (Oxford Univ. Press, New York, 1996).
Chapman, C. R. & Jones, K. L. Cratering and obliteration history of Mars.Annu. Rev. Earth Planet. Sci.5, 515–540 (1977).
Craddock, R. A. & Maxwell, T. A. Geomorphic evolution of the martian highlands through ancient fluvial processes.J. Geophys. Res.98, 3453–3468 (1993).
Craddock, R. A., Maxwell, T. A. & Howard, A. D. Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars.J. Geophys. Res.102, 13321–13340 (1997).
Golombek, M. P. & Bridges, N. T. Erosion rates on Mars and implications for climate change: constraints from the Pathfinder landing site.J. Geophys. Res.105, 1841–1853 (2000).
Baker, V. R. & Partridge, J. Small martian valleys: pristine and degraded morphology.J. Geophys. Res.91, 3561–3572 (1986).
Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a warm, wet climate on early Mars.Icarus71, 203–224 (1987).
Squyres, S. W. & Kasting, J. F. Early Mars: how warm and how wet?Science265, 744–749 (1994).
Kasting, J. F. CO2 condensation and the climate of early Mars.Icarus94, 1–13 (1991).
Forget, F. & Pierrehumbert, R. T. Warming early Mars with carbon dioxide clouds that scatter infrared radiation.Science278, 1273–1276 (1997).
Mischna, M. A., Kasting, J. F., Pavlov, A. & Freedman, R. Influence of carbon dioxide clouds on early martian climate.Icarus145, 546–554 (2000).
Phillips, R. J. et al. Ancient geodynamics and global-scale hydrology on Mars.Science291, 2587–2591 (2001).
Anderson, R. C. et al. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars.J. Geophys. Res. (in the press).
McSween, H. J. Jr et al. Geochemical evidence for magmatic water within mars from pyroxenes in the Shergotty meteorite.Nature409, 487–490 (2001).
Parker, T. J., Clifford, S. M. & Banerdt, W. B. Argyre Planitia and the Mars global hydrologic cycle.Lunar Planet. Sci. Conf. XXXI, Abstr. 2033 〈http://www.lpi.usra.edu/meetings/lpsc2000/pdf/2033.pdf〉 (2000).
Baker, V. R.The Channels of Mars 198 p (Univ. Texas Press, Austin, TX, 1982).
Jakosky, B. M. & Phillips, R. J. Water the many mysteries of Mars? (Abstr.)Am. Geophys. Union Fall meeting, San Francisco 〈http://www.agu.org/meetings/waisfm00.html〉 (2000).
Acuña, M. H. et al. Global distribution of crustal magnetism discovered by the Mars Global Surveyor MAG/ER experiment.Science284, 790–793 (1999).
Connerney, J. E. P. et al. Magnetic lineations in the ancient crust of Mars.Science284, 794–798 (1999).
Hynek, B. M. & Phillips, R. J. Evidence for extensive denudation of the Martian highlands.Geology29, 407–410 (2001).
Harrison, K. P. & Grimm, R. E. Martian hydrothermal systems: relationship between magnetic anomalies and valley networks.Lunar Planet. Sci. Conf. XXXII, Abstr. 1441 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1441.pdf〉 (2001).
Newman, M. J. & Rood, R. T. Implications of solar evolution for the Earth's early atmosphere.Science198, 1035–1037 (1977).
Kasting, J. F. & Grinspoon, D. H. inThe Sun in Time (eds Sonett, C. P., Giampapa, M. S. & Matthews, M. S.) 447–462 (Univ. Arizona Press, Tucson, 1991).
Haberle, R. M. Early Mars climate models.J. Geophys. Res.103, 28467–28479 (1998).
Melosh, H. J. & Vickery, A. M. Impact erosion of the primordial atmosphere of Mars.Nature338, 487–489 (1989).
Brain, D. A. & Jakosky, B. M. Atmospheric loss since the onset of the martian geologic record: combined role of impact erosion and sputtering.J. Geophys. Res.103, 22689–22694 (1998).
Frey, H. V., Shockey, K. M., Frey, E. L., Roark, J. H. & Sakimoto, S. E. H. A very large population of likely buried impact basins in the northern lowlands of Mars revealed by MOLA data.Lunar Planet. Sci. Conf. XXXII, Abstr. 1680 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1680.pdf〉 (2001).
Chyba, C. F., Owen, T. C. & Ip, W. H. inHazards Due to Comets and Asteroids (ed. Gehrels, T.) 9–58 (Univ. Arizona Press, Tucson, 1994).
Owen, T. & Bar-Nun, A. Comets, impacts, and atmospheres.Icarus116, 215–226 (1995).
Luhmann, J. G., Johnson, R. E. & Zhang, M. H. G. Evolutionary impact of sputtering of the martian atmosphere by O+ pickup ions.Geophys. Res. Lett.19, 2151–2154 (1992).
Mitchell, D. L. et al. Crustal magnetocylinders at Mars. (Abstr.)Am. Geophys. Union Spring meeting 〈http://www.agu.org/meetings/waissm00.html〉 (2000).
Ayres, T. R. Evolution of the solar ionizing flux.J. Geophys. Res.102, 1641–1651 (1997).
McElroy, M. B. & Yung, Y. L. Oxygen isotopes in the martian atmosphere: implications for the evolution of volatiles.Planet. Space Sci.24, 1107–1113 (1976).
Jakosky, B. M., Pepin, R. O., Johnson, R. E. & Fox, J. L. Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape.Icarus111, 271–288 (1994).
Hutchins, K. S. & Jakosky, B. M. Evolution of martian atmospheric argon: implications for sources of volatiles.J. Geophys. Res.101, 14933–14949 (1996).
Owen, T., Maillard, J. P., deBergh, C. & Lutz, B. L. Deuterium on Mars: the abundance of HDO and the value of D/H.Science240, 1767–1770 (1988).
Bjoraker, G. L., Mumma, M. J. & Larson, H. P. Isotopic abundance ratios for hydrogen and oxygen in the martian atmosphere.Bull. Am. Astron. Soc.21, 991 (1989).
Krasnopolsky, V. A., Bjoraker, G. L., Mumma, M. J. & Jennings, D. E. High-resolution spectroscopy of Mars at 3.7 and 8 μm: a sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO.J. Geophys. Res.102, 6525–6534 (1997).
Liu, S. C. & Donahue, T. M. The regulation of hydrogen and oxygen escape from Mars.Icarus28, 231–246 (1976).
Yung, Y. L. et al. HDO in the martian atmosphere: implications for the abundance of crustal water.Icarus76, 146–159 (1988).
Leshin, L. A. Insights into martian water reservoirs from analyses of martian meteorite QUE94201.Geophys. Res. Lett.27, 2017–2020 (2000).
Krasnopolsky, V. On the deuterium abundance on Mars and some related problems.Icarus148, 597–602 (2000).
Jakosky, B. M. & Leshin, L. A. Mars D/H: implications for volatile evolution and climate history. (Abstr.)Am. Geophys. Union Spring meeting, Boston 〈http://www.agu.org/meetings/waissm01.html〉 (2001).
Donahue, T. M. Evolution of water reservoirs on Mars from D/H ratios in the atmosphere and crust.Nature374, 432–434 (1995).
Gooding, J. L., Wentworth, S. J. & Zolensky, M. E. Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite.Geochim. Cosmochim. Acta52, 909–915 (1988).
Romanek, C. S. et al. Record of fluid-rock interactions on Mars from the meteorite ALH84001.Nature372, 655–657 (1994).
Treiman, A. H., Barrett, R. A. & Gooding, J. L. Preterrestrial alteration of the Lafayette (SNC) meteorite.Meteoritics28, 86–97 (1993).
Pollack. J. B. et al. Thermal emission spectra of Mars (5.4-10.5 μm): evidence for sulfates, carbonates, and hydrates.J. Geophys. Res.95, 14595–14627 (1990).
Christensen, P. R. et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation, description and surface science results.J. Geophys. Res. (in the press).
Marti, K. & Mathew, K. J. Ancient martian nitrogen.Geophys. Res. Lett.27, 1463–1466 (2000).
Mathew, K. J. & Marti, K. Early evolution of martian volatiles: nitrogen and noble gas components in ALH84001 and Chassigny.J. Geophys. Res.106, 1401–1422 (2001).
Turner, G., Knott, S. F., Ash, R. D. & Gilmour, J. D. Ar-Ar chronology of the martian meteorite ALH84001: evidence for the timing of the early bombardment of Mars.Geochim. Cosmochim. Acta61, 3835–3850 (1997).
Hutchins, K. S., Jakosky, B. M. & Luhmann, J. G. Impact of a paleo-magnetic field on sputtering loss of martian atmospheric argon and neon.J. Geophys. Res.102, 9183–9189 (1997).
Schubert, G., Russell, C. T. & Moore, W. B. Timing of the martian dynamo.Nature408, 666–667 (2000).
Weiss, B. P. et al. Records of an ancient Martian magnetic field in ALH84001.Lunar Planet. Sci. Conf. XXXII, Abstr. 1244 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1244.pdf〉 (2001).
Carr, M. H. H. Formation of martian flood features by release of water from confined aquifers.J. Geophys. Res.84, 2995–3007 (1979).
Hoffman, N. White Mars: a new model for Mars' surface and atmosphere based on CO2 .Icarus146, 326–342 (2000).
Lucchitta, B. K. Antarctic ice streams and outflow channels on Mars.Geophys. Res. Lett.28, 403–406 (2001).
Tanaka, K. L. Debris flow origin for the Simud/Tiu deposit on Mars.J. Geophys. Res.104, 8637–8652 (1999).
Carr, M. H. Mars: a water-rich planet?Icarus68, 187–216 (1986).
Watson, L. L., Hutcheon, I. D., Epstein, S. & Stolper, E. M. Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites.Science265, 86–90 (1994).
Jakosky, B. M. & Jones, J. H. The history of martian volatiles.Rev. Geophys.35, 1–16 (1997).
McSween, H. Y. Jr SNC Meteorites: clues to martian petrologic evolution?Rev. Geophys.23, 391–416 (1985).
McSween, H. Y. Jr What we have learned about Mars from SNC meteorites.Meteoritics29, 757–779 (1994).
Swindle, T. D. et al. Noble gases in iddingsite from the Lafayette meteorite: evidence for liquid water on Mars in the last few hundred million years.Meteoritics Planet. Sci.35, 107–115 (2000).
Christensen, P. R. et al. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water.J. Geophys. Res.105, 9623–9642 (2000).
Tanaka, K., Chapman, M., Johnson, J. & Titus, T. Examination of igneous alternatives to Martian hematite using terrestrial analogs.GSA Abstr. Programs32(7), Abstr. 52142 (2000).
Malin, M. C. & Edgett, K. S. Evidence for recent ground water seepage and surface runoff on Mars.Science288, 2330–2335 (2000).
Musselwhite, D. S., Swindle, T. D. & Lunine, J. I. Liquid CO2 breakout and the formation of recent small gullies on Mars.Geophys. Res. Lett.28, 1283–1285 (2001).
Stewart, S. T. & Nimmo, F. Surface runoff features on Mars: testing the carbon dioxide formation hypothesis.J. Geophys. Res. (submitted).
Mellon, M. T. & Phillips, R. J. Recent gullies on Mars and the source of liquid water.J. Geophys. Res. (in the press).
Cabrol, N. A. & Grin, E. A. Distribution, classification, and ages of martian impact crater lakes.Icarus142, 160–172 (1999).
Malin, M. C. & Edgett, K. S. Sedimentary rocks of early Mars.Science290, 1927–1937 (2001).
Parker, T. S., Saunders, R. S. & Schneeberger, D. M. Transitional morphology in the west Deuteronilus Mensae region of Mars: implications for modification of the lowland/upland boundary.Icarus82, 111–145 (1989).
Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. & Schneeberger, D. M. Coastal geomorphology of the martian northern plains.J. Geophys. Res.98, 11061–11078 (1993).
Head, J. W. et al. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter.Science286, 2134–2137 (1999).
Head, J. W. III et al. Oceans in the past history of Mars: tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data.Geophys. Res. Lett.25, 4401–4404 (1998).
Malin, M. C. & Edgett, K. S. Oceans or seas in the martian northern lowlands: high-resolution imaging tests of proposed coastlines.Geophys. Res. Lett.26, 3049–3052 (1999).
Withers, P. & Neumann, G. A. Enigmatic northern plains of Mars.Nature410, 651 (2001).
Scott, D. H. & Tanaka, K. L. Geologic map of the western equatorial region of Mars.US Geol. Surv. Map I-1802-A (1986).
Aharonson, O., Zuber, M. T., Neumann, G. A. & Head, J. W. Mars: northern hemisphere slopes and slope distributions.Geophys. Res. Lett.25, 4413–4416 (1998).
Smith, D. E. et al. The global topography of Mars and implications for surface evolution.Science284, 1495–1503 (1999).
Head, J. W., Kreslavsky, M. A. & Pratt, S. Northern lowlands on Mars: evidence for widespread volcanic flooding and tectonic deformation in the Early Hesperian.Lunar Planet. Sci. Conf. XXXII, Abstr. 1063 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1063.pdf〉 (2001).
Komar, P. D. Modes of sediment transport in channelized water flows with ramifications to the erosion of the martian outflow channels.Icarus42, 317–329 (1980).
Zuber, M. T. et al. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity.Science287, 1788–1793 (2000).
Pechmann, J. C. The origin of polygonal troughs on the northern plains of Mars.Icarus42, 185–210 (1980).
Hiesinger, H. & Head, J. W. Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data.J. Geophys. Res.105, 11999–12022 (2000).
Lane, M. D. & Christensen, P. R. Convection in a catastrophic flood deposit as the mechanism for the giant polygons on Mars.J. Geophys. Res.105, 17617–17627 (2000).
Greeley, R. & The Mars Exploration Payload Advisory Group.Mars Exploration Program: Scientific Goals, Objectives, Investigations, and Priorities (Jet Propulsion Laboratory Publication, in the press).
Purucker, M. et al. An altitude-normalized magnetic map of Mars and its interpretation.Geophys. Res. Lett.27, 2449–2452 (2000).
Goldspiel, J. M. & Squyres, S. W. Ancient aqueous sedimentation on Mars.Icarus89, 392–410 (1991).
Acknowledgements
We thank C. Leovy, S. Stewart, L. Leshin, M. Mellon, H. Frey, P. Withers, B. Hynek, K. Harrison, W. Hartmann and the MOLA science team for valuable discussions and for providing preprints of their manuscripts. We also thank J. Head, R. Haberle and C. Leovy for detailed reviews of our manuscript. This research was supported by the Mars Global Surveyor Project and the NASA Planetary Geology and Geophysics Program.
Author information
Authors and Affiliations
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, 80309-0392, Colorado, USA
Bruce M. Jakosky & Roger J. Phillips
Department of Geological Sciences, University of Colorado, Boulder, 80309-0392, Colorado, USA
Bruce M. Jakosky
McDonnell Center for Space Science and Dept. of Earth and Planetary Sciences, Washington University, St. Louis, 63130, Missouri, USA
Roger J. Phillips
- Bruce M. Jakosky
Search author on:PubMed Google Scholar
- Roger J. Phillips
Search author on:PubMed Google Scholar
Corresponding authors
Correspondence toBruce M. Jakosky orRoger J. Phillips.
Rights and permissions
About this article
Cite this article
Jakosky, B., Phillips, R. Mars' volatile and climate history.Nature412, 237–244 (2001). https://doi.org/10.1038/35084184
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Space habitats for bioengineering and surgical repair: addressing the requirement for reconstructive and research tissues during deep-space missions
- Alexandra Iordachescu
- Neil Eisenstein
- Gareth Appleby-Thomas
npj Microgravity (2023)
Coupling and interactions across the Martian whole atmosphere system
- Erdal Yiğit
Nature Geoscience (2023)
Isotopic fractionation of water and its photolytic products in the atmosphere of Mars
- Juan Alday
- Alexander Trokhimovskiy
- Alexey Shakun
Nature Astronomy (2021)
The global current systems of the Martian induced magnetosphere
- Robin Ramstad
- David A. Brain
- Bruce Jakosky
Nature Astronomy (2020)
Geologic Constraints on Early Mars Climate
- Edwin S. Kite
Space Science Reviews (2019)



