Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities

Naturevolume 409pages1047–1051 (2001)Cite this article

Abstract

Voltage-sensitive membrane channels, the sodium channel, the potassium channel and the calcium channel operate together to amplify, transmit and generate electric pulses in higher forms of life. Sodium and calcium channels are involved in cell excitation, neuronal transmission, muscle contraction and many functions that relate directly to human diseases1,2,3,4. Sodium channels—glycosylated proteins with a relative molecular mass of about 300,000 (ref.5)—are responsible for signal transduction and amplification, and are chief targets of anaesthetic drugs6 and neurotoxins1. Here we present the three-dimensional structure of the voltage-sensitive sodium channel from the eelElectrophorus electricus. The 19 Å structure was determined by helium-cooled cryo-electron microscopy and single-particle image analysis of the solubilized sodium channel. The channel has a bell-shaped outer surface of 135 Å in height and 100 Å in side length at the square-shaped bottom, and a spherical top with a diameter of 65 Å. Several inner cavities are connected to four small holes and eight orifices close to the extracellular and cytoplasmic membrane surfaces. Homologous voltage-sensitive calcium and tetrameric potassium channels, which regulate secretory processes and the membrane potential7, may possess a related structure.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-electron microscopy of the sodium channel.
Figure 2: Surface representation of the sodium channel protein.
Figure 3: Domains and internal cavities of the sodium channel protein and the sequence-based structure prediction.
Figure 4: Electron microscopy of negatively stained sodium channel protein, anti-C-terminal antibody complexes and their average projections.

Similar content being viewed by others

References

  1. Catterall, W. A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels.Neuron26, 13–25 (2000).

    Article CAS  Google Scholar 

  2. McClatchey, A. I. et al. Temperature-sensitive mutations in the III–IV cytoplasmic loop region of the skeletal muscle sodium channel gene in paramyotonia congenita.Cell68, 769–774 (1992).

    Article CAS  Google Scholar 

  3. Ptacek, L. J. et al. Identification of a mutation in the gene causing hyperkalemic periodic paralysis.Cell67, 1021–1027 (1991).

    Article CAS  Google Scholar 

  4. Deschenes, I. et al. Electrophysiological characterization of SCN5A mutations causing long QT (E1784K) and Brugada (R1512W and R1432G) syndromes.Cardiovasc Res.46, 55–65 (2000).

    Article CAS  Google Scholar 

  5. James, W. M. & Agnew, W. S. Multiple oligosaccharide chains in the voltage-sensitive Na+ channel fromElectrophorus electricus: evidence for α-2,8-linked polysialic acid.Biochem. Biophys. Res. Commun.148, 817–826 (1987).

    Article CAS  Google Scholar 

  6. Ragsdale, D. S., McPhee, J. C., Scheuer, T. & Catterall, W. A. Molecular determinants of state-dependent block of Na+ channels by local anesthetics.Science265, 1724–1728 (1994).

    Article ADS CAS  Google Scholar 

  7. Kandel, E. R. & Schwartz, J. H. Molecular biology of learning: modulation of transmitter release.Science218, 433–443 (1982).

    Article ADS CAS  Google Scholar 

  8. Stühmer, W. et al. Structural parts involved in activation and inactivation of the sodium channel.Nature339, 597–603 (1989).

    Article ADS  Google Scholar 

  9. Heinemann, S. H., Terlau, H., Stühmer, W., Imoto, K. & Numa, S. Calcium channel characteristics conferred on the sodium channel by single mutations.Nature356, 441–443 (1992).

    Article ADS CAS  Google Scholar 

  10. Vassilev, P. M., Scheuer, T. & Catterall, W. A. Identification of an intracellular peptide segment involved in sodium channel inactivation.Science241, 1658–1661 (1988).

    Article ADS CAS  Google Scholar 

  11. Gordon, R. D., Fieles, W. E., Schotland, D. L., Hogue-Angeletti, R. & Barchi, R. L. Topographical localization of the C-terminal region of the voltage-dependent sodium channel fromElectrophorus electricus using antibodies raised against a synthetic peptide.Proc. Natl Acad. Sci. USA84, 308–312 (1987).

    Article ADS CAS  Google Scholar 

  12. Rohl, C. A. et al. Solution structure of the sodium channel inactivation gate.Biochemistry38, 855–861 (1999).

    Article CAS  Google Scholar 

  13. Sato, C., Sato, M., Iwasaki, A., Doi, T. & Engel, A. The sodium channel has four domains surrounding a central pore.J. Struct. Biol.121, 314–325 (1998).

    Article CAS  Google Scholar 

  14. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity.Science280, 69–77 (1998).

    Article ADS CAS  Google Scholar 

  15. Noda, M. et al. Primary structure ofElectrophorus electricus sodium channel deduced from cDNA sequence.Nature312, 121–127 (1984).

    Article ADS CAS  Google Scholar 

  16. Tanabe, T. et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle.Nature328, 313–318 (1987).

    Article ADS CAS  Google Scholar 

  17. Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N. & Jan, L. Y. Sequence of a probable potassium channel component encoded at Shaker locus ofDrosophila.Science237, 770–775 (1987).

    Article ADS CAS  Google Scholar 

  18. Fujiyoshi, Y. The structural study of membrane proteins by electron crystallography.Adv. Biophys.35, 25–80 (1998).

    Article CAS  Google Scholar 

  19. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system.J. Struct. Biol.116, 17–24 (1996).

    Article CAS  Google Scholar 

  20. Penczek, P., Radermacher, M. & Frank, J. Three-dimensional reconstruction of single particles embedded in ice.Ultramicroscopy40, 33–53 (1992).

    Article CAS  Google Scholar 

  21. van Heel, M. Classification of very large electron microscopical image data sets.Optik82, 114–126 (1989).

    Google Scholar 

  22. van Heel, M. Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction.Ultramicroscopy38, 241–251 (1987).

    Google Scholar 

  23. MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel.Nature350, 232–235 (1991).

    Article ADS CAS  Google Scholar 

  24. Miyazawa, A., Fujiyoshi, Y., Stowell, M. & Unwin, N. Nicotinic acetylcholine receptor at 4.6 Å resolution: Transverse tunnels in the channel wall.J. Mol. Biol.288, 765–786 (1999).

    Article CAS  Google Scholar 

  25. Yang, N., George, A. L. Jr & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels.Neuron16, 113–122 (1996).

    Article  Google Scholar 

  26. Liu, Y., Jurman, M. E. & Yellen, G. Dynamic rearrangement of the outer mouth of a K+ channel during gating.Neuron16, 859–867 (1996).

    Article CAS  Google Scholar 

  27. Mitsuoka, K., Murata, K., Kimura, Y., Namba, K. & Fujiyoshi, Y. Examination of the LeafScan 45, a line-illuminating micro-densitometer, for its use in electron crystallography.Ultramicroscopy68, 109–121 (1997).

    Article CAS  Google Scholar 

  28. van Heel, M. Multivariate statistical classification of noisy images (randomly oriented biological macromolecules).Ultramicroscopy13, 165–183 (1984).

    Article CAS  Google Scholar 

  29. Frank, J., Bretaudiere, J. P., Carazo, J. M., Verschoor, A. & Wagenknecht, T. Classification of images of biomolecular assemblies: a study of ribosomes and ribosomal subunits ofEscherichia coli.J. Microsc.150, 99–115 (1988).

    Article CAS  Google Scholar 

  30. Harauz, G. & van Heel, M. Exact filters for general geometry three dimensional reconstruction.Optik73, 146–156 (1986).

    Google Scholar 

Download references

Acknowledgements

We thank S. Müller for her illuminating suggestions and help with the manuscript, and M. van Heel, M. Schatz and R. Schmidt for their helpful and constructive advice. T. Moriya promoted the present research. We also thank K. Imoto for discussions, A. Oshima for suggestions and S. Miyazaki for assistance. This work was supported by grants from the ETL, the Japan New Energy and Industrial Technology Development Organization (NEDO), and the Swiss National Science Foundation (to A.E.), and by the Maurice E. Müller Foundation, Switzerland.

Author information

Authors and Affiliations

  1. Supermolecular Science Division, Electrotechnical Laboratory (ETL), Umezono 1-1-4, Tsukuba, 305-8568, Japan

    Chikara Sato, Yutaka Ueno & Kiyoshi Asai

  2. School of Knowledge Science, Japan Advanced Institute of Science and Technology Hokuriku (JAIST), Asahidai 1-1, Tatsunokuchi, Ishikawa, 923-1211, Japan

    Katsutoshi Takahashi

  3. Central Research Institute, Itoham Foods Inc., Kubogaoka 1-2, Moriya, 302-0104, Japan

    Masahiko Sato

  4. Maurice E. Müller Institute, at the Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, CH-4056, Switzerland

    Andreas Engel

  5. Department of Biophysics, Faculty of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan

    Yoshinori Fujiyoshi

Authors
  1. Chikara Sato

    You can also search for this author inPubMed Google Scholar

  2. Yutaka Ueno

    You can also search for this author inPubMed Google Scholar

  3. Kiyoshi Asai

    You can also search for this author inPubMed Google Scholar

  4. Katsutoshi Takahashi

    You can also search for this author inPubMed Google Scholar

  5. Masahiko Sato

    You can also search for this author inPubMed Google Scholar

  6. Andreas Engel

    You can also search for this author inPubMed Google Scholar

  7. Yoshinori Fujiyoshi

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toChikara Sato.

Rights and permissions

About this article

Cite this article

Sato, C., Ueno, Y., Asai, K.et al. The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities.Nature409, 1047–1051 (2001). https://doi.org/10.1038/35059098

Download citation

Access through your institution
Buy or subscribe

Associated content

A 3D view of sodium channels

  • William A. Catterall
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp