- Letter
- Published:
Mitochondrial genome variation and the origin of modern humans
Naturevolume 408, pages708–713 (2000)Cite this article
16kAccesses
1225Citations
72Altmetric
ACorrigendum to this article was published on 29 March 2001
Abstract
The analysis of mitochondrial DNA (mtDNA) has been a potent tool in our understanding of human evolution, owing to characteristics such as high copy number, apparent lack of recombination1, high substitution rate2 and maternal mode of inheritance3. However, almost all studies of human evolution based on mtDNA sequencing have been confined to the control region, which constitutes less than 7% of the mitochondrial genome. These studies are complicated by the extreme variation in substitution rate between sites, and the consequence of parallel mutations4 causing difficulties in the estimation of genetic distance and making phylogenetic inferences questionable5. Most comprehensive studies of the human mitochondrial molecule have been carried out through restriction-fragment length polymorphism analysis6, providing data that are ill suited to estimations of mutation rate and therefore the timing of evolutionary events. Here, to improve the information obtained from the mitochondrial molecule for studies of human evolution, we describe the global mtDNA diversity in humans based on analyses of the complete mtDNA sequence of 53 humans of diverse origins. Our mtDNA data, in comparison with those of a parallel study of the Xq13.3 region7 in the same individuals, provide a concurrent view on human evolution with respect to the age of modern humans.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Olivio, P. D., Van de Walle, M. J., Laipis, P. J. & Hauswirth, W. W. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop.Nature306, 400– 402 (1983).
Brown, W. M., George, M. Jr & Wilson, A. C. Rapid evolution of animal mitochondrial DNA.Proc. Natl Acad. Sci. USA76, 1967– 1971 (1979).
Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Maternal inheritance of human mitochondrial DNA.Proc. Natl Acad. Sci. USA 77, 6715–6719 (1980).
Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Mol. Biol. Evol.10, 512– 526 (1993).
Maddison, D. R., Ruvolo, M. & Swofford, D. L. Geographic origins of human mitochondrial DNA: phylogenetic evidence from control region sequences.Syst. Biol. 41, 111–124 (1992).
Torroni, A. et al. mtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe.Am. J. Hum. Genet.62, 1137–1152 ( 1998).
Kaessmann, H., Heissig, F., von Haeseler, A. & Paabo, S. DNA sequence variation in a non-coding region of low recombination on the human X chromosome.Nature Genet.22, 78 –81 (1999).
Strimmer, K. & von Haesseler, A. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol. Biol. Evol.13, 964–969 (1996).
Sarich, V. M. & Wilson, A. C. Generation time and genomic evolution in primates.Science179, 1144– 1147 (1973).
Andrews, P. Evolution and environment in the Hominoidea.Nature 360, 641–646 (1992).
Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution.Nature392, 917– 920 (1998).
Awadalla, P., Eyre-Walker, A. & Smith, J. M. Linkage disequilibrium and recombination in hominid mitochondrial DNA.Science286, 2524– 2525 (1999).
Eyre-Walker, A., Smith, N. H. & Smith, J. M. How clonal are human mitochondria?Proc. R. Soc. Lond. B266, 477–483 (1999).
Kumar, S., Hedrick, P. & Stoneking, M. Questioning evidence for recombination in human mitochondrial DNA.Science288, 1931 ( 2000).
Lewontin, R. C. The interaction of selection and linkage. I. General considerations; heterotic models.Genetics49, 49– 67 (1964).
Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. African populations and the evolution of human mitochondrial DNA.Science253, 1503–1507 (1991).
Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature325, 31–36 ( 1987).
Wolpoff, M. H. inThe Human Revolution: Behavioural and Biological Perspectives on the Origins of Modern Humans (eds Mellars, P. & Stringer, C.) 62–108 (Princeton Univ. Press, Princeton, New Jersey, 1989).
Horai, S., Hayasaka, K., Kondo, R., Tsugane, K. & Takahata, N. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs.Proc. Natl Acad. Sci. USA92, 532–536 ( 1995).
Ruvolo, M. et al. Mitochondrial COII sequences and modern human origins. Mol. Biol. Evol.10, 1115–1135 (1993).
Templeton, A. R. Human origins and analysis of mitochondrial DNA sequences.Science255, 737 (1992).
Nei, M. Age of the common ancestor of human mitochondrial DNA.Mol. Biol. Evol.9, 1176–1178 ( 1992).
Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4, 406–425 (1987).
Zietkiewicz, E. et al. Genetic structure of the ancestral population of modern humans.J. Mol. Evol.47, 146– 155 (1998).
Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences.Mol. Biol. Evol.9, 552–569 ( 1992).
Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations.Genetics133, 693– 709 (1993).
Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics123, 585–595 (1989).
Rozas, J. & Rozas, R. DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data.Comput. Appl. Biosci.11, 621–625 (1995).
Klein, R. G. The Human Career: Human Biological and Cultural Origins (Univ. Chicago Press, Chicago, 1989).
Reider, M. J., Taylor, S. L., Tobe, V. O. & Nickerson, D. A. Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome.Nucleic Acids Res.26, 967–973 ( 1998).
Acknowledgements
We thank M. Stoneking for his advice regarding the analysis of recombination, and L. Cavalli-Sforza, G. Destro-Bisol, L. Excoffier, T. Jenkins, K. Kidd, J. Kidd, G. Klein, R. Mahabeer, V. Nasidze, E. Poloni, H. Soodyall, M. Stoneking, M. Voevoda and S. Wells for scmples. This work was supported by grants from Swedish Natural Sciences Research Council and Beijer Foundation.
Author information
Authors and Affiliations
Department of Genetics and Pathology Section of Medical Genetics, Rudbeck Laboratory, University of Uppsala, Uppsala, S-751 85, Sweden
Max Ingman & Ulf Gyllensten
Max Planck Institute for Evolutionary Anthropology, Inselstrasse 22, Leipzig, D-04103, Germany
Henrik Kaessmann & Svante Pääbo
- Max Ingman
Search author on:PubMed Google Scholar
- Henrik Kaessmann
Search author on:PubMed Google Scholar
- Svante Pääbo
Search author on:PubMed Google Scholar
- Ulf Gyllensten
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toUlf Gyllensten.
Rights and permissions
About this article
Cite this article
Ingman, M., Kaessmann, H., Pääbo, S.et al. Mitochondrial genome variation and the origin of modern humans.Nature408, 708–713 (2000). https://doi.org/10.1038/35047064
Received:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Dating ancient splits in phylogenetic trees, with application to the human-Neanderthal split
- Keren Levinstein Hallak
- Saharon Rosset
BMC Genomic Data (2024)
Polymorphism of the IL-10 gene in Azeri population of Iran
- Mohammad Asgharzadeh
- Zahra Taghinejad
- Hossein Samadi Kafil
Egyptian Journal of Medical Human Genetics (2022)
Pedigree derived mutation rate across the entire mitochondrial genome of the Norfolk Island population
- J. R. Connell
- M. C. Benton
- L. R. Griffiths
Scientific Reports (2022)
African mitochondrial haplogroup L7: a 100,000-year-old maternal human lineage discovered through reassessment and new sequencing
- Paul A. Maier
- Göran Runfeldt
- Miguel G. Vilar
Scientific Reports (2022)
Genomic analysis of a novel Neanderthal from Mezmaiskaya Cave provides insights into the genetic relationships of Middle Palaeolithic populations
- Tatiana V. Andreeva
- Andrey D. Manakhov
- Evgeny I. Rogaev
Scientific Reports (2022)


