- Letter
- Published:
Pilus retraction powers bacterial twitching motility
Naturevolume 407, pages98–102 (2000)Cite this article
6051Accesses
767Citations
13Altmetric
Abstract
Twitching and social gliding motility allow many Gram negative bacteria to crawl along surfaces, and are implicated in a wide range of biological functions1. Type IV pili (Tfp) are required for twitching and social gliding, but the mechanism by which these filaments promote motility has remained enigmatic1,2,3,4. Here we use laser tweezers5 to show that Tfp forcefully retract.Neisseria gonorrhoeae cells that produce Tfp actively crawl on a glass surface and form adherent microcolonies. When laser tweezers are used to place and hold cells near a microcolony, retractile forces pull the cells toward the microcolony. In quantitative experiments, the Tfp of immobilized bacteria bind to latex beads and retract, pulling beads from the tweezers at forces that can exceed 80 pN. Episodes of retraction terminate with release or breakage of the Tfp tether. Both motility and retraction mediated by Tfp occur at about 1 µm s-1 and require protein synthesis and function of the PilT protein. Our experiments establish that Tfp filaments retract, generate substantial force and directly mediate cell movement.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol.32, 1–10 (1999).
Henrichsen, J. Twitching motility.Annu. Rev. Microbiol.37, 81–93 (1983).
Bradley, D. E. A function ofPseudomonas aeruginosa PAO polar pili: twitching motility.Can. J. Microbiol.26, 146– 154 (1980).
Wolfgang, M., Park, H. S., Hayes, S. F., van Putten, J. P. M. & Koomey, M. Suppression of an absolute defect in type IV pilus biogenesis by loss-of-function mutations inpilT, a twitching motility gene inNeisseria gonorrhoeae.Proc. Natl Acad. Sci. USA95, 14973– 14978 (1998).
Sheetz, M. P. (ed.) Laser Tweezers in Cell Biology (Academic, New York, 1997).
Swanson, J. Studies on gonococcus infection. XII. Colony color and opacity variants of gonococci.Infect. Immun.19, 320– 331 (1978).
O'Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary forPseudomonas aeruginosa biofilm development. Mol. Microbiol.30, 295–304 (1998).
Bieber, D.et al. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenicEscherichia coli.Science280, 2114–2118 (1998).
Comolli, J. C. et al.Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia.Infect. Immun.67, 3625– 3630 (1999).
Pujol, C., Eugene, E., Marceau, M. & Nassif, X. The meningococcal PilT protein is required for induction of intimate attachment to epithelial cells following pilus-mediated adhesion.Proc. Natl Acad. Sci. USA96, 4017–4022 ( 1999).
Merz, A. J., Enns, C. A. & So, M. Type IV pili of pathogenicNeisseriae elicit cortical plaque formation in epithelial cells.Mol. Microbiol.32, 1316–1332 (1999).
Seifert, H. S., Ajioka, R. S., Marchal, C., Sparling, P. F. & So, M. DNA transformation leads to pilin antigenic variation inNeisseria gonorrhoeae.Nature336, 392–395 (1988).
Dubnau, D. DNA uptake in bacteria.Annu. Rev. Microbiol.53, 217–244 (1999).
Yoshida, T., Kim, S. R. & Komano, T. Twelvepil genes are required for biogenesis of the R64 thin pilus.J. Bacteriol.181, 2038–2043 (1999).
Bradley, D. E. Evidence for the retraction ofPseudomonas aeruginosa RNA phage pili.Biochem. Biophys. Res. Commun.47, 142– 149 (1972).
Karaolis, D. K., Somara, S., Maneval, D. R. Jr, Johnson, J. A. & Kaper, J. B. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria.Nature399, 375– 379 (1999).
Parge, H. E. et al. Structure of the fibre-forming protein pilin at 2.6 Å resolution.Nature378, 32– 38 (1995).
Forest, K. T. & Tainer, J. A. Type-4 pilus structure: outside to inside and top to bottom—a minireview.Gene 192, 165–169 (1997).
Whitchurch, C. B., Hobbs, M., Livingston, S. P., Krishnapillai, V. & Mattick, J. S. Characterisation of aPseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria.Gene101, 33–44 (1991).
Wolfgang, M. et al.pilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliatedNeisseria gonorrhoeae.Mol. Microbiol.29, 321 –330 (1998).
Brossay, L., Paradis, G., Fox, R., Koomey, M. & Hebert, J. Identification, localization, and distribution of the PilT protein inNeisseria gonorrhoeae.Infect. Immun. 62, 2302–2308 (1994).
Krause, S. et al. Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by thecag pathogenicity island ofHelicobacter pylori share similar hexameric ring structures.Proc. Natl Acad. Sci. USA97, 3067–3072 (2000).
Novotny, C. P. & Fives-Taylor, P. Retraction of F pili.J. Bacteriol.117, 1306– 1311 (1974).
Ginocchio, C. C., Olmsted, S. B., Wells, C. L. & Galan, J. E. Contact with epithelial cells induces the formation of surface appendages onSalmonella typhimurium.Cell76, 717–724 (1994).
Evans, E., Berk, D. & Leung, A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments.Biophys. J.59, 838– 848 (1991).
Shao, J. Y., Ting-Beall, H. P. & Hochmuth, R. M. Static and dynamic lengths of neutrophil microvilli.Proc. Natl Acad. Sci. USA95, 6797– 6802 (1998).
Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy.Proc. Natl Acad. Sci. USA93, 1913–1917 (1996).
Mahadevan, L. & Matsudaira, P. Motility powered by supramolecular springs and ratchets.Science288, 95– 100 (2000).
Dupuy, B., Taha, M. K., Pugsley, A. P. & Marchal, C. Neisseria gonorrhoeae prepilin export studied inEscherichia coli.J. Bacteriol.173, 7589– 7598 (1991).
Felsenfeld, D. P., Schwartzberg, P. L., Venegas, A., Tse, R. & Sheetz, M. P. Selective regulation of integrin-cytoskeleton interactions by the tyrosine kinase Src.Nature Cell Biol. 1, 200–206 (1999).
Acknowledgements
We thank our colleagues in the Sheetz and So labs for invaluable technical assistance and stimulating discussions; E. Barklis and L. Kenney for critical comments on the manuscript; and M. Koomey for providing bacterial strains. This work was supported by NIH grants to M.S. and M.P.S. A.J.M. received pre-doctoral support from an NIH NRSA grant and postdoctoral support from the Cancer Research Fund of the Damon Runyan-Walter Winchell Foundation.
Author information
Alexey J. Merz
Present address: Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, 03755-3844, USA
Michael P. Sheetz
Present address: Department of Biological Sciences, Columbia University, New York, New York, 10027, USA
Authors and Affiliations
Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, 97201-3098, Oregon, USA
Alexey J. Merz & Magdalene So
Department of Cell Biology, Duke University Medical School, Durham, 27705, North Carolina, USA
Michael P. Sheetz
- Alexey J. Merz
Search author on:PubMed Google Scholar
- Magdalene So
Search author on:PubMed Google Scholar
- Michael P. Sheetz
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toMichael P. Sheetz.
Rights and permissions
About this article
Cite this article
Merz, A., So, M. & Sheetz, M. Pilus retraction powers bacterial twitching motility.Nature407, 98–102 (2000). https://doi.org/10.1038/35024105
Received:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Microbes in porous environments: from active interactions to emergent feedback
- Chenyu Jin
- Anupam Sengupta
Biophysical Reviews (2024)
Multi-scale dynamic imaging reveals that cooperative motility behaviors promote efficient predation in bacteria
- Sara Rombouts
- Anna Mas
- Marcelo Nollmann
Nature Communications (2023)
Non-equilibrium dynamics of bacterial colonies—growth, active fluctuations, segregation, adhesion, and invasion
- Kai Zhou
- Marc Hennes
- Benedikt Sabass
Communications Physics (2022)
Bacterial motility: machinery and mechanisms
- Navish Wadhwa
- Howard C. Berg
Nature Reviews Microbiology (2022)
Force spectroscopy of interactions between Yersinia pseudotuberculosis and Yersinia pestis cells and monoclonal antibodies using optical tweezers
- Andrey Byvalov
- Ilya Konyshev
- Vladislav Belozerov
European Biophysics Journal (2022)


